最短路径--Dijkstra

我第一次做的最短路径!是poj的2387题目;http://acm.pku.edu.cn/JudgeOnline/problem?id=2387
题目是说奶牛要赶回家睡觉,所以要走最短路径,有t条路径,有n个标记.下面的t行分别是标记之间的距离,这里的输入比较诡异,如果你之前输入了2 3 30.在后面再输入2 3 40,则会忽略这次输入,因为40比30大!首先我是想用open,closed表做的,因为A*和D*也是类似的做法.但是做到后面发现好像这么做的时间复杂度比较大.所以还是改了一下.

这里贴上我的代码:
#include <cstdio>
int i,j,p1,p2,d,t,n,T[1001][1001],f;//,num_closed;//closed[1001],
bool closed[1001];

void init()
{
	for(int i=1;i<=n;++i)
	{
		closed[i]=false;
	  for(int j=1;j<=n;++j)
	    T[i][j]=2100000000;
	}
}

void checkin()
{
	scanf("%d %d %d",&p1,&p2,&d);
	//cin>>p1>>p2>>d;
	if(T[p1][p2]>d)
	{
	  T[p1][p2]=d;
	  T[p2][p1]=d;
	}
}
/*
bool notin_closed(int j)
{
	for(int i=0;i!=num_closed;++i)
	  if(closed[i]==j)
	    return false;
	return true;
}*/
int pick()
{
	int min1=2100000000,minp=-1;
	for(int i=1;i!=n;++i)
		if(!closed[i]&&T[n][i]<min1)
		{
			min1=T[n][i];
			minp=i;
		}
		return minp;
}
int main()
{
	while(scanf("%d %d",&t,&n)!=EOF)
	{
	  init();
	  for(i=0;i!=t;++i)
	    checkin();
	  closed[n]=true;
	  while(1)
	  {
		if((f=pick())==-1)
			break;
		closed[f]=true;
	    for(i=1;i!=n;++i)
	      if(!closed[i]&&T[n][f]+T[f][i]<T[n][i])
	        T[n][i]=T[n][f]+T[f][i];
	  }
	  printf("%d\n",T[n][1]);
	}	
	return 0;
}

你可能感兴趣的:(F#,J#)