POJ 1087 A Plug for UNIX (网络流)

题目链接:http://poj.org/problem?id=1087


题面:

A Plug for UNIX
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 15000   Accepted: 5075

Description

You are in charge of setting up the press room for the inaugural meeting of the United Nations Internet eXecutive (UNIX), which has an international mandate to make the free flow of information and ideas on the Internet as cumbersome and bureaucratic as possible.
Since the room was designed to accommodate reporters and journalists from around the world, it is equipped with electrical receptacles to suit the different shapes of plugs and voltages used by appliances in all of the countries that existed when the room was built. Unfortunately, the room was built many years ago when reporters used very few electric and electronic devices and is equipped with only one receptacle of each type. These days, like everyone else, reporters require many such devices to do their jobs: laptops, cell phones, tape recorders, pagers, coffee pots, microwave ovens, blow dryers, curling
irons, tooth brushes, etc. Naturally, many of these devices can operate on batteries, but since the meeting is likely to be long and tedious, you want to be able to plug in as many as you can.
Before the meeting begins, you gather up all the devices that the reporters would like to use, and attempt to set them up. You notice that some of the devices use plugs for which there is no receptacle. You wonder if these devices are from countries that didn't exist when the room was built. For some receptacles, there are several devices that use the corresponding plug. For other receptacles, there are no devices that use the corresponding plug.
In order to try to solve the problem you visit a nearby parts supply store. The store sells adapters that allow one type of plug to be used in a different type of outlet. Moreover, adapters are allowed to be plugged into other adapters. The store does not have adapters for all possible combinations of plugs and receptacles, but there is essentially an unlimited supply of the ones they do have.

Input

The input will consist of one case. The first line contains a single positive integer n (1 <= n <= 100) indicating the number of receptacles in the room. The next n lines list the receptacle types found in the room. Each receptacle type consists of a string of at most 24 alphanumeric characters. The next line contains a single positive integer m (1 <= m <= 100) indicating the number of devices you would like to plug in. Each of the next m lines lists the name of a device followed by the type of plug it uses (which is identical to the type of receptacle it requires). A device name is a string of at most 24 alphanumeric
characters. No two devices will have exactly the same name. The plug type is separated from the device name by a space. The next line contains a single positive integer k (1 <= k <= 100) indicating the number of different varieties of adapters that are available. Each of the next k lines describes a variety of adapter, giving the type of receptacle provided by the adapter, followed by a space, followed by the type of plug.

Output

A line containing a single non-negative integer indicating the smallest number of devices that cannot be plugged in.

Sample Input

4 
A 
B 
C 
D 
5 
laptop B 
phone C 
pager B 
clock B 
comb X 
3 
B X 
X A 
X D 

Sample Output

1

Source

East Central North America 1999

题目大意:

    有n个插座,m个抽头需要,便利店提供k种适配器,问最多有多少个插头可以使用。

解题:

    这道题虽然不难,但是把模型抽象出来真的是比较麻烦。首先,不太明确,n个插座中是否有重复,所以用map排了下重。然后,给每种插座从1开始编号,然后统计每种插头需要数量。再给适配器中没有在插座中出现过的插头编号,将适配器中的插头看作插座,然后按适配器的关系,在两者间加一条无限的边。(因为我是反着跑得,所以加反向边)。然后,在源点到每个插座间加权值为他们的数量的边。然后根据插头,在同类型的插座和插头间,加无限的边。插头到汇点间加插头数量的边。(终于构完图了。。)跑一遍,减一下就是答案了!


代码:

#include <iostream>
#include <cstdio>
#include <queue>
#include <string.h> 
#include <map>
#include <string>
using namespace std;
#define arraySize 350
#define inf 1000000000
int capacity[arraySize][arraySize],flow[arraySize][arraySize],max_flow[arraySize],pre[arraySize];
//capacity存储点之间最大流量,flow存储点之间当前已经流过的流量 
//max_flow存储每次遍历过程中的值,pre记录查找过程中每个节点的前一节点,用于后续更新
struct node
{
	string a,b;
}store[110];
int Edmonds_Karp(int source,int target)//源点,汇点 
{
	//初始化 
	queue <int> store;
	int ans=0,cur;
	//cur当前节点 
	memset(flow,0,sizeof(flow));
	while(true)//一直寻找增广路 
	{
	   memset(max_flow,0,sizeof(max_flow));	
	   memset(pre,0,sizeof(pre));
	   store.push(source);
	   max_flow[source]=inf;
	   while(!store.empty())
	   {
   	     cur=store.front();
   	     store.pop();
   	     for(int next=source;next<=target;next++)
   	     {
   	     	//max_flow[next]恰可以用于标记是否访问过,同时要保证两点之间还有剩余流量 
                //这个过程中,可能会出现多条可行路径,但因为汇点只有一个会被先到达的路径抢占,故每个过程只能找到一条
     	    if(!max_flow[next]&&capacity[cur][next]>flow[cur][next])
            {
                 store.push(next);  
                 //如果这两个点之间的值,比之前的最小值还小,则更新 
                 max_flow[next]=min(max_flow[cur],capacity[cur][next]-flow[cur][next]);
                 //记录前一个节点,用于后续更新 
                 pre[next]=cur;
 			} 	
	     }
   	   }
   	   //说明已经找不到增广路了 
   	   if(max_flow[target]==0)break;
	   //更新操作 
   	   for(int u=target;u!=source;u=pre[u])  
        {  
            flow[pre[u]][u]+=max_flow[target];
			//反向边  
            flow[u][pre[u]]-=max_flow[target];  
        }  
        ans+=max_flow[target]; 
	}
	return ans;
}
int main()
{
    int n,m,k,cnt1,cnt2,ans;
	string tmp,use,a,b;
	cin>>n;
	cnt1=0;
	map <string,int> re;
    map <string,int> receptacle;
	map <string,int> plug;
	map <string,int> plug_num;
	//构图
	for(int i=1;i<=n;i++)
	{
      cin>>tmp;
	  re[tmp]++;
	}
	map <string,int> ::iterator itt;
	for(itt=re.begin();itt!=re.end();itt++)
	{
		receptacle[itt->first]=++cnt1;
	}
	cin>>m;
    for(int i=1;i<=m;i++)
	{
		cin>>tmp>>use;
		plug[use]++;
	}
    cin>>k;
	cnt2=cnt1;
	for(int i=1;i<=k;i++)
	{
      cin>>a>>b;
	  store[i].a=a;
	  store[i].b=b;
	  if(!receptacle.count(a))
		  receptacle[a]=++cnt2;
	  if(!receptacle.count(b))
		  receptacle[b]=++cnt2;
	}
	memset(capacity,0,sizeof(capacity));
	for(itt=receptacle.begin();itt!=receptacle.end();itt++)
	{
		capacity[0][receptacle[itt->first]]=re[itt->first];
	}
	for(int i=cnt1+1;i<=cnt2;i++)
		capacity[0][i]=0;
	for(int i=1;i<=k;i++)
		capacity[receptacle[store[i].b]][receptacle[store[i].a]]=inf;
	map <string,int> ::iterator it;
    for(it=plug.begin();it!=plug.end();it++)
	{
		plug_num[it->first]=++cnt2;
	}
	//cout<<"cnt: "<<cnt<<endl;
	for(it=plug.begin();it!=plug.end();it++)
	{
		if(receptacle.count(it->first))
		capacity[receptacle[it->first]][plug_num[it->first]]=inf;
	}
	for(it=plug.begin();it!=plug.end();it++)
	{
		capacity[plug_num[it->first]][cnt2+1]=plug[it->first];
	}
    ans=Edmonds_Karp(0,cnt2+1);
	cout<<m-ans<<endl;
	return 0;
}


你可能感兴趣的:(入门,poj,网络流)