问题描述:
假设我们有8种不同面值的硬币{1,2,5,10,20,50,100,200},用这些硬币组合够成一个给定的数值n。例如n=200,那么一种可能的组合方式为 200 = 3 * 1 + 1*2 + 1*5 + 2*20 + 1 * 50 + 1 * 100. 问总过有多少种可能的组合方式?
[华为面试题] 1分2分5分的硬币三种,组合成1角,共有多少种组合?
[创新工厂笔试题] 有1分,2分,5分,10分四种硬币,每种硬币数量无限,给定n分钱,有多少中组合可以组成n分钱?
解题思路:
给定一个数值sum,假设我们有m种不同类型的硬币{V1, V2, ..., Vm},如果要组合成sum,那么我们有
sum = x1 * V1 + x2 * V2 + ... + xm * Vm
求所有可能的组合数,就是求满足前面等值的系数{x1, x2, ..., xm}的所有可能个数。
[思路1] 当然我们可以采用暴力枚举,各个系数可能的取值无非是x1 = {0, 1, ..., sum / V1}, x2 = {0, 1, ..., sum/ V2}等等。这对于硬币种类数较小的题目还是可以应付的,比如华为和创新工厂的题目,但是复杂度也很高O(sum/V1 * sum/V2 * sum/V3 * ...)
[思路2] 从上面的分析中我们也可以这么考虑,我们希望用m种硬币构成sum,根据最后一个硬币Vm的系数的取值为无非有这么几种情况,xm分别取{0, 1, 2, ..., sum/Vm},换句话说,上面分析中的等式和下面的几个等式的联合是等价的。
sum = x1 * V1 + x2 * V2 + ... + 0 * Vm
sum = x1 * V1 + x2 * V2 + ... + 1 * Vm
sum = x1 * V1 + x2 * V2 + ... + 2 * Vm
...
sum = x1 * V1 + x2 * V2 + ... + K * Vm
其中K是该xm能取的最大数值K = sum / Vm。可是这又有什么用呢?不要急,我们先进行如下变量的定义:
dp[i][sum] = 用前i种硬币构成sum 的所有组合数。
那么题目的问题实际上就是求dp[m][sum],即用前m种硬币(所有硬币)构成sum的所有组合数。在上面的联合等式中:当xn=0时,有多少种组合呢? 实际上就是前i-1种硬币组合sum,有dp[i-1][sum]种! xn = 1 时呢,有多少种组合? 实际上是用前i-1种硬币组合成(sum - Vm)的组合数,有dp[i-1][sum -Vm]种; xn =2呢, dp[i-1][sum - 2 * Vm]种,等等。所有的这些情况加起来就是我们的dp[i][sum]。所以:
dp[i][sum] = dp[i-1][sum - 0*Vm] + dp[i-1][sum - 1*Vm]
+ dp[i-1][sum - 2*Vm] + ... + dp[i-1][sum - K*Vm]; 其中K = sum / Vm
换一种更抽象的数学描述就是:
通过此公式,我们可以看到问题被一步步缩小,那么初始情况是什么呢?如果sum=0,那么无论有前多少种来组合0,只有一种可能,就是各个系数都等于0;
dp[i][0] = 1 // i = 0, 1, 2, ... , m
如果我们用二位数组表示dp[i][sum], 我们发现第i行的值全部依赖与i-1行的值,所以我们可以逐行求解该数组。如果前0种硬币要组成sum,我们规定为dp[0][sum] = 0.
求解实际问题
有数量不限的硬币,币值为25分、10分、5分和1分,请编写代码计算n分有几种表示法。
给定一个int n,请返回n分有几种表示法。保证n小于等于100000,为了防止溢出,请将答案Mod 1000000007。
class Coins { public: int countWays(int n) { // write code here int coins[4]={1,5,10,25}; int dp[100001] = {0}; dp[0] = 1; for(int i = 0;i < 4;++i){ for(int j = coins[i];j <= n;++j){ dp[j] =(dp[j]+dp[j-coins[i]])%1000000007; } } return dp[n]; } };