红黑树

摘要:

  红黑树是一种二叉查找树,但在每个结点上增加了一个存储位表示结点的颜色,可以是RED或者BLACK。通过对任何一条从根到叶子的路径上各个着色方式的限制,红黑树确保没有一条路径会比其他路径长出两倍,因而是接近平衡的。本章主要介绍了红黑树的性质、左右旋转、插入和删除。重点分析了在红黑树中插入和删除元素的过程,分情况进行详细讨论。一棵高度为h的二叉查找树可以实现任何一种基本的动态集合操作,如SEARCH、PREDECESSOR、SUCCESSOR、MIMMUM、MAXMUM、INSERT、DELETE等。当二叉查找树的高度较低时,这些操作执行的比较快,但是当树的高度较高时,这些操作的性能可能不比用链表好。红黑树(red-black tree)是一种平衡的二叉查找树,它能保证在最坏情况下,基本的动态操作集合运行时间为O(lgn)。本章内容有些复杂,看了两天,才大概清楚其插入和删除过程,日后需要经常回顾,争取完全消化掉。红黑树的用途非常广泛,例如STL中的map就是采用红黑树实现的,效率非常之高,有机会可以研究一下STL的源代码。

1、红黑树的性质

  红黑树中的每个结点包含五个域:color、key、left、right和parent。如果某结点没有一个子结点或父结点,则该结点相应的指针parent域包含值为NIL(NIL并是是空指针,此处有些迷惑,一会解释)。把NIL视为指向红黑树的外结点(叶子)的指针,而把带关键字的结点视为红黑树的内结点。红黑树结点结构如下所示:

1 #define RED 0
2 #define BLACK 1
3 struct RedBlackTreeNode
4 {
5 T key;
6 struct RedBlackTreeNode * parent;
7 struct RedBlackTreeNode * left;
8 struct RedBlackTreeNode * right;
9 int color;
10 };

红黑树的性质如下:

(1)每个结点或是红色,或是黑色。

(2)根结点是黑色。

(3)每个叶子结点(NIL)是黑色。

(4)如果有一个结点是红色,则它的两个儿子都是黑色。

(5)对每个结点,从该结点到其孙子结点的所有路径上包含相同数目的黑色结点。

如下图是一棵红黑树:
红黑树_第1张图片
从图可以看出NIL不是空指针,而是一个叶子结点。实际操作的时候可以将NIL视为哨兵,这样便于对黑红色进行操作。红黑树的操作主要是对内部结点操作,因为内部结点存储了关键字的值。书中为了便于讨论,忽略了叶子结点的,如是上图红黑树变成如下图所示:
红黑树_第2张图片
  书中给出了黑高度的概念:从某个结点x出发(不包含该结点)到达一个叶子结点的任意一条路径上,黑色结点的个数称为该结点的黑高度。由红黑树的性质(5)可知,从该结点出发的所有下降路径都有相同的黑色结点个数。红黑树的黑高度定义为其根结点的黑高度。

  书中给出了一个引理来说明为什么红黑树是一种好的查找树,并对引理进行了证明(采用归纳法进行证明的,需要很强的归纳推理知识,正是我的不足之处,看书的痛苦在于此)。

引理:一棵有n个内结点的红黑树的高度之多为2lg(n+1)。

2、旋转

  在红黑树上进行结点插入和删除操作时,会改变树的结构形状,导致结果可能不满足了红黑树的某些性质,为了保证每次插入和删除操作后,仍然能报维持红黑树的性质,需要改变树中某些结点的颜色和指针结构。其中的指针结构的改变通过旋转完成的。书中给出了两种旋转:左旋转和右旋转。如下图是旋转过程:
红黑树_第3张图片
  从图可以得出左右旋转的过程,假设对某个结点x进行左旋转,y是x的右孩子,则左旋转过程为:以x和y之间的链为“支轴”进行的,使得x的右孩子为y的左孩子,y的父节点为x的父节点,y的左孩子为x。书中给出了左旋转的伪代码如下:

 1 LEFT_ROTATE(T,x)

2 y = right[x] //获取右孩子
3 rihgt[x] = left[y] //设置x的右孩子为y的左孩子
4 if left[y] != NIL
5 then parent[left[x]] = x
6 parent[y] = parent[x] //设置y的父节点为x的父节点
7 if parent[x] == NIL
8 then root[T] = y
9 else if x==left[parent[x]
10 then left[parent[x]] = y
11 else right[[parent[x]] = y
12 left[y] = x //设置y的左孩子为x
13 parent[x] =y
14
15

假设对某个结点y进行右旋转,x是y的左孩子,则左旋转过程为:y的左孩子设置为x的右孩子,将x的父节点设置为y的父节点,x的右孩子设置为y。书中并没有给出右旋转的伪代码,参照左旋转的伪代码很容易实现:

1 RIGHT_ROTATE(T,y)
2 x = left[y] //获取左孩子
3 left[y] = right[x] //设置y的左孩子为x的右孩子
4 if right[x] != NIL
5 then parent[right[x]] = y
6 parent[x] = parent[y] //设为x的父节点为y的父结点
7 if parent[y] == NIL
8 then root = x
9 else if y== left[parent[y]]
10 then left[parent[y]] = x
11 else right[parent[y]] = x
12 right[x] = y //设置x的右孩子为y
13 parent[y] = x

为了更好的理解旋转操作,书中给出了一个左旋转的例如,如下图所示:
红黑树_第4张图片
3、插入

  红黑树插入一个新结点的过程RB_INSERT是在二叉查找树插入过程的基础上改进的,先按照二叉排序的插入过程插入到红黑树中,然后将新插入的结点标记为红色(疑问:为什么是红色,而不是黑色呢?),然后调用一个辅助的过程RB_INSERT_FIXUP来调整结点并重新着色,使得满足红黑树的性质。关于二叉查找树的插入过程可以参考上一篇日志:http://www.cnblogs.com/Anker/archive/2013/01/28/2880581.html。书中给出了RB_INSERT的伪代码:

  红黑树的插入过程最主要的是RB_INSERT_FIXUP过程,书中发了很大的篇幅进行介绍。首先分析了当插入一个新的结点后,会破坏红黑树的哪些性质,然后针对可能的破坏性质进行分类讨论并给出了给出了解决办法。因为每次插入的新元素标记为RED,这样可能性质2(根节点为黑色)和性质4(一个红结点的左右孩子都是黑色的)被破坏。例如下图插入一个新结点,破坏了性质4。
红黑树_第5张图片
如果每次插入新的结点z导致红黑树性质被破坏,则之多只有一个性质被破坏,并且不是性质2就是性质4。违反性质2是因为z是根且为红色,违反性质4是因为z和其父节点parent[z]都是红色的。

  如果性质2被违反了,则红色的根必定是新增的结点z,它是树中唯一的内结点,由于z的父接点和两个子女都是NIL(黑色),不违反性质4。违反性质2在整个插入过程中只有这一次。所以对于违反性质2的结点,直接将其结点变成黑色即可。

  剩下的问题是对于违反性质4的处理,在插入新结点z之前,红黑树的性质没有被破坏。插入结点z后违反性质4,必定是因为z和其父亲结点parent[z]都是红色的,此时只违反性质4,而没有违反其他性质。假设新插入结点z,导致红黑树性质4被破坏,此时z和其父节点parent[z]都是红色,由于在插入结点z之前红黑树的性质没有被破坏,parent[z]是红色,很容易推出z的祖父结点parent[parent[z]]必定是黑色。此时根据parent[z]是parent[parent[z]]的左孩子还是右孩子进行讨论。因为左右之间是对称的,书中只给出了parent[z]作为parent[parent[z]]的左孩子进行讨论的,然后给出了三种可能的情况。

情况1):z的叔叔结点y是红色的

  此时parent[z]和y都是红色的,解决办法是将z的父节点parent[z]和叔叔结点y都着为黑色,而将z的祖父结点parent[parent[z]]着为红色,然后从祖父结点parent[parent[z]]继续向上判断是否破坏红黑树的性质。处理过程如下图所示:
红黑树_第6张图片
情况2):z的叔叔y是黑色的,而且z是右孩子

情况3):z的叔叔y是黑色的,而且z是左孩子

  情况2和情况3中y都是黑色的,通过z是左孩子还是右孩子进行区分的。可以将情况2通过旋转为情况3。情况2中z是右孩子,旋转后成为情况3,使得z变为左孩子,可以在parent[z]结点出使用一次左旋转来完成。无论是间接还是直接的通过情况2进入到情况3,z的叔叔y总是黑色的。在情况3中,将parent[z]着为黑色,parent[parent[z]]着为红色,然后从parent[parent[z]]处进行一次右旋转。情况2、3修正了对性质4的违反,修正过程不会导致其他的红黑性质被破坏。修正过程如下图所示:
红黑树_第7张图片
  给一个完整的例子来说明插入过程,如下图所示:
红黑树_第8张图片
  书中给出了RB_INSERT_FIXUP的伪代码,伪代码中只给出了z的父节点为左孩子的情况,为右孩子的情况与左孩子的情况是对称的,只需将左孩子中的right换成left即可。

1 RB_INSERT_FIXUP(T,z)
2 while color[parent[z]] = RED
3 do if parent[z] == left[parent[parent[z]]]
4 then y = right[parent[parent[z]]]
5 if color[y] == RED //情况1,z的叔叔为红色
6 then color[parent[z]] = BLACK
7 color[y] = BLACK
8 color[parent[parent[z]]=RED
9 z= parent[parent[z]]
10 else if z == right[parent[z]] //情况2,z的叔叔为黑色,z为右孩子
11 then z = parent[z]
12 LEFT_ROTATE(T,z)
13 color[parent[z]]=BLACK //情况3,z的叔叔为黑色,z为左孩子
14 color[parent[parent[z]] = RED
15 RIGHT_ROTATE(T, parent[parent[z]])
16 else (same as then clause with “right” and “left” exchanged)
17 color(root(T)) = BLACK; //将根结点设置为黑色

你可能感兴趣的:(存储,红黑树)