- 更好地进行SQL问题回答的提示技术
bavDHAUO
sqloracle数据库python
在SQL问题回答过程中,提示工程是生成正确SQL查询的关键。通过使用create_sql_query_chain,我们将探讨如何优化提示技术,以改善SQL查询生成。本文将重点讲述如何在提示中获得针对特定数据库的信息。技术背景介绍在使用自然语言生成SQL查询时,数据库的特定方言、表结构信息以及少量示例都能够显著提高生成查询的准确性。通过LangChain库,我们可以优化这些提示来帮助模型更好地理解和
- Ubuntu 上可以安装ms sqlserver?(不能上网2)
修炼成精
ubuntusqlserverlinux
如果您有一台可以上网的Windows电脑,您可以利用它来下载所需的SQLServer安装包和依赖包,然后将这些包传输到无法上网的Ubuntu服务器上进行离线安装。以下是详细的步骤:步骤1:在Windows电脑上下载所需的软件包安装WSL(WindowsSubsystemforLinux):如果您还没有安装WSL,可以按照以下步骤安装:打开PowerShell并运行以下命令以启用WSL:powers
- 模型部署实战:PyTorch生产化指南
小诸葛IT课堂
pytorch人工智能python
一、为什么要做模型部署?模型部署是将训练好的模型投入实际应用的关键步骤,涉及:模型格式转换(TorchScript/ONNX)性能优化(量化/剪枝)构建API服务移动端集成本章使用ResNet18实现图像分类,并演示完整部署流程。二、模型转换:TorchScript与ONNX1.准备预训练模型importtorchimporttorchvision#加载预训练模型model=torc
- Spring Boot 性能优化:如何解决高并发下的瓶颈问题?
zhyoobo
springboot性能优化后端
一、高并发场景的挑战与诊断方法论1.1典型性能瓶颈四层模型在2000+QPS的电商秒杀场景中,SpringBoot应用常面临四层压力传导:网络层瓶颈TCP连接耗尽导致SYN队列溢出(Linux默认仅1024个)SSL握手消耗大量CPU资源(RSA2048单次握手约需10ms)HTTP/1.1的队头阻塞问题(单个连接只能顺序处理请求)应用层瓶颈线程池配置不当引发的上下文切换风暴(默认Tomcat线程
- 算力技术演进与多场景融合路径
智能计算研究中心
其他
内容概要算力技术的演进正经历从异构计算到量子计算的范式跃迁。当前技术图谱中,芯片制程突破与架构创新持续推动算力密度提升,如5nm以下先进工艺与存算一体设计显著增强运算单元效率。与此同时,模型压缩、数据预处理等算法优化手段使单位算力产出提高30%以上。典型应用场景中,工业互联网通过自适应计算实现毫秒级实时控制,医疗影像领域借助分布式计算完成TB级数据处理,而智能安防系统依托边缘计算降低端到端时延至5
- 金融风控算法透明度与可解释性优化
智能计算研究中心
其他
内容概要金融风控算法的透明化研究面临模型复杂性提升与监管合规要求的双重挑战。随着深度学习框架在特征提取环节的广泛应用,算法可解释性与预测精度之间的平衡成为核心议题。本文从联邦学习架构下的数据协作机制出发,结合特征工程优化与超参数调整技术,系统性分析逻辑回归、随机森林等传统算法在召回率、F1值等关键指标上的表现差异。研究同时探讨数据预处理流程对风控决策鲁棒性的影响,并提出基于注意力机制的特征权重可视
- 联邦学习算法安全优化与可解释性研究
智能计算研究中心
其他
内容概要本研究围绕联邦学习算法的安全性优化与模型可解释性增强展开系统性探索。首先,针对联邦学习中数据隐私泄露与模型性能损耗的固有矛盾,提出一种融合差分隐私与动态权重聚合的协同优化框架,通过分层加密机制降低敏感信息暴露风险。其次,引入可解释性算法(如LIME与SHAP)构建透明化决策路径,结合注意力机制实现特征贡献度的可视化映射,有效提升模型在医疗影像异常检测与金融欺诈识别场景中的可信度。此外,研究
- DeepSeek多语言670亿参数高效创作解析
智能计算研究中心
其他
内容概要本文聚焦DeepSeek系列模型的核心技术突破与应用价值,通过解析其混合专家架构(MoE)的设计逻辑与670亿参数的规模化优势,揭示其在多语言处理、视觉语言理解及代码生成领域的创新表现。从技术特性出发,文章将对比OpenAI等主流模型的性能差异,探讨参数效率与计算资源优化如何支撑低成本、高精度的内容生成场景,例如学术论文写作、智能选题规划及SEO关键词拓展。同时,通过分析DeepSeekP
- 算力融合创新与多场景应用生态构建
智能计算研究中心
其他
内容概要算力作为数字经济的核心驱动力,正经历从单一计算范式向融合架构的跨越式演进。随着异构计算、光子计算等底层技术的突破,算力资源逐步形成跨架构协同、多模态联动的智能供给体系,支撑工业互联网、医疗影像、智能安防等场景实现效率跃升。与此同时,量子计算与神经形态计算的前沿探索,正在重塑科学计算与实时决策的技术边界。建议行业关注算力可扩展性与安全标准的协同设计,通过动态调度算法与分布式架构优化,构建弹性
- 下一代模型技术演进与场景应用突破
智能计算研究中心
其他
内容概要当前模型技术正经历多维度的范式跃迁,可解释性模型与自动化机器学习(AutoML)成为突破传统黑箱困境的核心路径。在底层架构层面,边缘计算与量子计算的融合重构了算力分配模式,联邦学习技术则为跨域数据协作提供了安全可信的解决方案。主流框架如TensorFlow和PyTorch持续迭代优化能力,通过动态参数压缩与自适应超参数调优策略,显著提升模型部署效率。应用层创新呈现垂直化特征,医疗诊断模型通
- H800核心性能优化技术
智能计算研究中心
其他
内容概要作为新一代AI加速卡的核心创新载体,H800通过异构计算架构与动态能效管理技术的协同设计,实现了从硬件底层到应用层的系统性优化。其技术突破聚焦于张量核心重构带来的计算密度提升、混合精度运算对资源利用率的增强,以及智能散热方案在复杂负载场景下的稳定性保障。这些创新不仅显著提升了30%以上的能效比,更通过精细化任务调度机制,解决了深度学习训练中高并发数据处理与模型参数同步的效率瓶颈。值得关注的
- Goose开源程序本地机上 AI 代理,能够从头到尾自动执行复杂的开发任务。Goose 不仅可以提供代码建议,还可以自主构建整个项目、编写和执行代码、调试故障、编排工作流程以及与外部 API 交互
struggle2025
策略模式人工智能交互
一、软件下载文末提供程序和源码下载Goose是您的机上AI代理,能够从头到尾自动执行复杂的开发任务。Goose不仅可以提供代码建议,还可以自主构建整个项目、编写和执行代码、调试故障、编排工作流程以及与外部API交互。无论您是在构建想法原型、优化现有代码,还是管理复杂的工程管道,goose都能适应您的工作流程并精确执行任务。goose专为实现最大的灵活性而设计,可与任何LLMAPI配合使用,并与支持
- iOS发布app到App Store教程
Cloudox_
iOS拾遗iOS之海iOS发布App发布证书AppStore
要发布首先需要发布证书,其获取和安装的基本流程和真机调试证书一致,关于真机调试证书的获取和使用可以参考这篇文章。不过现在Xcode7不需要真机调试证书也可实现真机调试了,可以参考这篇文章。要获取证书,以及发布app,都需要开发者账号,开发者账号分为个人和企业两种,在https://developer.apple.com/programs/这个网站注册。关于申请开发者账号,有时间再写一篇文章好啦。获
- MDX语言的软件工程
苏墨瀚
包罗万象golang开发语言后端
MDX语言的软件工程引言在现代软件开发中,技术的进步不断推动着开发流程的变化与优化。MDX(MultidimensionalExpressions)语言作为一种用于查询和操作多维数据集的表达式语言,已在数据分析、商业智能等领域得到了广泛应用。本文将探讨MDX语言在软件工程中的应用,包括其基本概念、工作原理、最佳实践以及在数据分析系统中的具体案例。1.MDX语言概述MDX最初由微软开发,通常用于访问
- C语言的回溯算法
苏墨瀚
包罗万象golang开发语言后端
C语言中的回溯算法引言回溯算法(Backtracking)是一种通过搜索所有可能的候选解,找到符合条件的解的算法。它常用于解决一些组合问题、约束满足问题和优化问题。回溯算法的核心思想是通过尝试并逐步构建解的过程,在发现某个解不能继续时,从当前解的最后一个决策点“回溯”到之前的状态,进行其他可能性的探索。在这篇文章中,我们将探讨回溯算法的基本思想、基本框架及其在C语言中的具体实现,应用实例等。回溯算
- Objective-C语言的调试工具
苏墨瀚
包罗万象golang开发语言后端
Objective-C调试工具详解Objective-C是一种面向对象的编程语言,广泛应用于macOS和iOS开发。由于其动态性和灵活性,Objective-C在开发过程中可能会遇到各种复杂的调试问题。为了帮助开发者更高效地定位和解决问题,Objective-C提供了多种调试工具和技术。本文将详细介绍这些工具,并探讨如何在实际开发中使用它们。1.Xcode调试器Xcode是苹果官方提供的集成开发环
- 网络安全工程师有职业寿命吗,能干多久?
网络安全(king)
黑客网络工程师网络安全网络web安全安全phpandroid
你说的这个网络安全工程师是,网络安全,还是信息安全,分开答吧。如果是网络安全,就是调试防火墙的网络工程师。这个大概率是在乙方或者厂商,因为甲方不会单独搞一个岗位调试防火墙。如果在厂商,后续可以转TAC,转研发,转HR(转了HR也算这个职业寿命结束了)。大部分可以到35-40.后续转了,也不大算网络安全工程师了吧。如果是乙方,大概率35左右到头,如果不升职,确实这个不太好,防火墙容量就这么大,而且很
- 重构革命:如何通过C#代码优化实现软件的华丽转身
墨夶
C#学习资料1重构c#开发语言
在软件开发的世界里,代码的质量直接决定了项目的成败。随着业务需求的变化和技术的进步,原有的代码结构可能逐渐变得臃肿、难以维护。这时,代码重构就成为了提升系统性能、增强可读性和简化后续开发工作的关键手段。本文将深入探讨C#代码重构的最佳实践,帮助开发者掌握这一技能,在不改变外部行为的前提下对内部实现进行改进,使程序更加健壮、灵活且易于扩展。一、1.1为什么需要重构?当一个项目随着时间推移而不断增长时
- Dify 项目开源大模型应用开发平台
魔王阿卡纳兹
IT杂谈开源项目观察开源difLLM开发平台
Dify是一款开源的大语言模型(LLM)应用开发平台,旨在简化生成式AI应用的创建、部署和持续优化流程。以下从多个维度对该项目进行详细介绍:一、项目定义与核心功能Dify的核心定位是结合后端即服务(BaaS)和LLMOps理念,为开发者提供从原型到生产的全生命周期支持。其核心功能包括:可视化工作流构建通过可视化画布(如ReactFlow)编排AI工作流,支持多步骤任务处理,例如文档解析、模型推理和
- AI推动地理信息系统(GIS)软件的创新发展与应用拓展
酥脆可口
facebook
摘要地理信息系统(GIS)软件作为空间数据处理与分析的核心工具,在城市规划、资源管理、环境监测等领域发挥着关键作用。本文深入探讨人工智能(AI)如何推动GIS软件的创新发展,分析AI技术在提升空间数据分析能力、优化地图制图、拓展应用场景等方面的重要作用,剖析面临的挑战,并对未来发展趋势进行展望,旨在为GIS行业借助AI实现升级提供理论与实践参考。一、引言传统GIS软件主要依赖基于规则的分析方法和人
- SvelteKit 最新中文文档教程(7)—— 构建和部署
前言Svelte,一个语法简洁、入门容易,面向未来的前端框架。从Svelte诞生之初,就备受开发者的喜爱,根据统计,从2019年到2024年,连续6年一直是开发者最感兴趣的前端框架No.1:Svelte以其独特的编译时优化机制著称,具有轻量级、高性能、易上手等特性,非常适合构建轻量级Web项目。为了帮助大家学习Svelte,我同时搭建了Svelte最新的中文文档站点。如果需要进阶学习,也可以入手我
- 用 Python 实现每秒百万级请求
weixin_33719619
python网络后端
本文讲的是用Python实现每秒百万级请求,用Python可以每秒发出百万个请求吗?这个问题终于有了肯定的回答。许多公司抛弃Python拥抱其他语言就为了提高性能节约服务器成本。但是没必要啊。Python也可以胜任。Python社区近来针对性能做了很多优化。CPython3.6新的字典实现方式提升了解释器的总体性能。得益于更快的调用约定和字典查询缓存,CPython3.7会更快。对于计算密集型工作
- 如何做好性能测试
测试
如何做好性能测试主要依靠测试策略规划、性能测试工具选择、数据分析优化**。其中测试策略规划尤为关键,通过制定详细的测试目标和场景,明确各阶段测试重点,有助于降低项目风险和优化系统性能。实践中,企业普遍发现,完善的测试策略可以使系统响应时间降低20%~30%,大大提升用户体验和业务稳定性。一、性能测试的基本概念与重要性性能测试是指通过模拟用户操作及系统负载,对软件系统的响应时间、吞吐量、资源利用率等
- AI驱动软件开发流程的智能化转型与效能提升
我有些不开心
开发语言
摘要在数字化快速发展的时代,软件开发行业面临着提升效率、保证质量与满足多变需求的挑战。本文聚焦人工智能(AI)如何驱动软件开发流程的智能化转型,探讨其在需求分析、代码编写、测试调试、项目管理等环节对效能的提升,分析转型中面临的挑战,并对未来发展趋势展开展望,为软件行业借助AI实现升级提供理论与实践参考。一、引言传统软件开发流程依赖大量人工操作,各环节易出现沟通不畅、效率低下、错误频发等问题。随着软
- ci如何做才能做到每秒rps 为3000+
行思理
LNMP运维CIphp
要让CodeIgniter(CI)实现每秒3000+RPS(RequestsPerSecond)的高并发处理能力,需要从框架优化、服务器配置、代码设计等多方面入手。尽管CI本身是一个轻量级框架,但其默认配置和传统PHP-FPM模式的性能天花板较低(通常RPS在500-800左右),需通过以下优化策略突破性能瓶颈:一、核心优化方向1.升级PHP版本与启用OPcachePHP8+:使用PHP8.0及以
- 车辆检测与识别:车辆分类_(9).车辆分类模型的评估与优化
zhubeibei168
机器人(二)分类数据挖掘人工智能计算机视觉机器学习视频监控
车辆分类模型的评估与优化在车辆检测与识别领域,车辆分类模型的评估与优化是确保模型性能和可靠性的关键步骤。本节将详细介绍如何评估车辆分类模型的性能,并提供一些优化技术,以提高模型的准确性和效率。模型评估指标1.准确率(Accuracy)准确率是最直观的评估指标,表示分类器正确分类的样本占总样本的比例。然而,在不平衡数据集上,准确率可能具有误导性。fromsklearn.metricsimportac
- 园林无线灌溉控制系统组成与功能
北京聚英翱翔电子有限公司
物联网监控系统工业物联网物联网人工智能大数据
随着信息技术的飞速发展和全球水资源日益紧张,无线灌溉控制系统作为一种高效、智能的灌溉方式,在园林行业中得到了广泛的应用。该系统基于物联网技术传感器技术、无线通信技术等,通过远程监控和自动控制,实现了对园林灌溉的精准管理和优化。园林无线灌溉控制解决方案,集成改造原有灌溉系统中的阀门、控制器等部件,配合监测园林环境信息的采集器,利用LORA无线网络进行通讯,经智慧农业云平台调控执行灌溉作业,实现远程手
- YOLO11改进-模块-引入频率谱动态聚合模块FSDA 去除噪声
一勺汤
YOLOv11模型改进系列目标检测魔改模块YOLOYOLOv11YOLOv11改进改进
在图像去雾领域,深度学习在白天图像去雾方面成果显著,但夜间雾图研究较少。夜间雾图面临诸多挑战,其中包括雾、辉光和噪声因多个低强度有源彩色光源而具有复杂特性,以及模拟与真实数据的域差异导致的亮度问题。为解决这些,我们使用FSDA模块,处理频率不一致特性。FSDA先对频谱信息聚合,再计算通道权重并应用,最后映射回空间域,以此优化频谱信息,使模型更好处理复杂干扰。本文将其与YOLOv11相结合,增强YO
- 智慧畜牧:智能化监控系统如何提升养殖效率与质量
inscode_041
最新接入DeepSeek-V3模型,点击下载最新版本InsCodeAIIDE智慧畜牧:智能化监控系统如何提升养殖效率与质量在当今数字化时代,畜牧业正经历着前所未有的变革。传统的人工监控方式已经难以满足现代养殖场对高效管理和精准控制的需求。为了应对这一挑战,越来越多的养殖场开始引入智能化监控系统,以提高生产效率、优化资源利用并确保动物健康。而在这个过程中,一款名为InsCodeAIIDE的智能开发工
- MySQL 8.0 特性的高频面试题及核心知识点
dblens 数据库管理和开发工具
mysqlmysql数据库面试题
1.索引原理与MySQL8.0新特性答案:自适应哈希索引:MySQL8.0自动在频繁查询的索引上构建哈希索引,加速等值查询(如WHEREid=1)。全文索引优化:支持布尔模式(MATCH()AGAINST())和自然语言模式,且索引更新更高效。InnoDB页压缩:支持ZSTD压缩算法,减少存储空间和I/O开销。虚拟列索引:可对虚拟列(ComputedColumns)创建索引,减少存储冗余。2.事务
- 解读Servlet原理篇二---GenericServlet与HttpServlet
周凡杨
javaHttpServlet源理GenericService源码
在上一篇《解读Servlet原理篇一》中提到,要实现javax.servlet.Servlet接口(即写自己的Servlet应用),你可以写一个继承自javax.servlet.GenericServletr的generic Servlet ,也可以写一个继承自java.servlet.http.HttpServlet的HTTP Servlet(这就是为什么我们自定义的Servlet通常是exte
- MySQL性能优化
bijian1013
数据库mysql
性能优化是通过某些有效的方法来提高MySQL的运行速度,减少占用的磁盘空间。性能优化包含很多方面,例如优化查询速度,优化更新速度和优化MySQL服务器等。本文介绍方法的主要有:
a.优化查询
b.优化数据库结构
- ThreadPool定时重试
dai_lm
javaThreadPoolthreadtimertimertask
项目需要当某事件触发时,执行http请求任务,失败时需要有重试机制,并根据失败次数的增加,重试间隔也相应增加,任务可能并发。
由于是耗时任务,首先考虑的就是用线程来实现,并且为了节约资源,因而选择线程池。
为了解决不定间隔的重试,选择Timer和TimerTask来完成
package threadpool;
public class ThreadPoolTest {
- Oracle 查看数据库的连接情况
周凡杨
sqloracle 连接
首先要说的是,不同版本数据库提供的系统表会有不同,你可以根据数据字典查看该版本数据库所提供的表。
select * from dict where table_name like '%SESSION%';
就可以查出一些表,然后根据这些表就可以获得会话信息
select sid,serial#,status,username,schemaname,osuser,terminal,ma
- 类的继承
朱辉辉33
java
类的继承可以提高代码的重用行,减少冗余代码;还能提高代码的扩展性。Java继承的关键字是extends
格式:public class 类名(子类)extends 类名(父类){ }
子类可以继承到父类所有的属性和普通方法,但不能继承构造方法。且子类可以直接使用父类的public和
protected属性,但要使用private属性仍需通过调用。
子类的方法可以重写,但必须和父类的返回值类
- android 悬浮窗特效
肆无忌惮_
android
最近在开发项目的时候需要做一个悬浮层的动画,类似于支付宝掉钱动画。但是区别在于,需求是浮出一个窗口,之后边缩放边位移至屏幕右下角标签处。效果图如下:
一开始考虑用自定义View来做。后来发现开线程让其移动很卡,ListView+动画也没法精确定位到目标点。
后来想利用Dialog的dismiss动画来完成。
自定义一个Dialog后,在styl
- hadoop伪分布式搭建
林鹤霄
hadoop
要修改4个文件 1: vim hadoop-env.sh 第九行 2: vim core-site.xml <configuration> &n
- gdb调试命令
aigo
gdb
原文:http://blog.csdn.net/hanchaoman/article/details/5517362
一、GDB常用命令简介
r run 运行.程序还没有运行前使用 c cuntinue 
- Socket编程的HelloWorld实例
alleni123
socket
public class Client
{
public static void main(String[] args)
{
Client c=new Client();
c.receiveMessage();
}
public void receiveMessage(){
Socket s=null;
BufferedRea
- 线程同步和异步
百合不是茶
线程同步异步
多线程和同步 : 如进程、线程同步,可理解为进程或线程A和B一块配合,A执行到一定程度时要依靠B的某个结果,于是停下来,示意B运行;B依言执行,再将结果给A;A再继续操作。 所谓同步,就是在发出一个功能调用时,在没有得到结果之前,该调用就不返回,同时其它线程也不能调用这个方法
多线程和异步:多线程可以做不同的事情,涉及到线程通知
&
- JSP中文乱码分析
bijian1013
javajsp中文乱码
在JSP的开发过程中,经常出现中文乱码的问题。
首先了解一下Java中文问题的由来:
Java的内核和class文件是基于unicode的,这使Java程序具有良好的跨平台性,但也带来了一些中文乱码问题的麻烦。原因主要有两方面,
- js实现页面跳转重定向的几种方式
bijian1013
JavaScript重定向
js实现页面跳转重定向有如下几种方式:
一.window.location.href
<script language="javascript"type="text/javascript">
window.location.href="http://www.baidu.c
- 【Struts2三】Struts2 Action转发类型
bit1129
struts2
在【Struts2一】 Struts Hello World http://bit1129.iteye.com/blog/2109365中配置了一个简单的Action,配置如下
<!DOCTYPE struts PUBLIC
"-//Apache Software Foundation//DTD Struts Configurat
- 【HBase十一】Java API操作HBase
bit1129
hbase
Admin类的主要方法注释:
1. 创建表
/**
* Creates a new table. Synchronous operation.
*
* @param desc table descriptor for table
* @throws IllegalArgumentException if the table name is res
- nginx gzip
ronin47
nginx gzip
Nginx GZip 压缩
Nginx GZip 模块文档详见:http://wiki.nginx.org/HttpGzipModule
常用配置片段如下:
gzip on; gzip_comp_level 2; # 压缩比例,比例越大,压缩时间越长。默认是1 gzip_types text/css text/javascript; # 哪些文件可以被压缩 gzip_disable &q
- java-7.微软亚院之编程判断俩个链表是否相交 给出俩个单向链表的头指针,比如 h1 , h2 ,判断这俩个链表是否相交
bylijinnan
java
public class LinkListTest {
/**
* we deal with two main missions:
*
* A.
* 1.we create two joined-List(both have no loop)
* 2.whether list1 and list2 join
* 3.print the join
- Spring源码学习-JdbcTemplate batchUpdate批量操作
bylijinnan
javaspring
Spring JdbcTemplate的batch操作最后还是利用了JDBC提供的方法,Spring只是做了一下改造和封装
JDBC的batch操作:
String sql = "INSERT INTO CUSTOMER " +
"(CUST_ID, NAME, AGE) VALUES (?, ?, ?)";
- [JWFD开源工作流]大规模拓扑矩阵存储结构最新进展
comsci
工作流
生成和创建类已经完成,构造一个100万个元素的矩阵模型,存储空间只有11M大,请大家参考我在博客园上面的文档"构造下一代工作流存储结构的尝试",更加相信的设计和代码将陆续推出.........
竞争对手的能力也很强.......,我相信..你们一定能够先于我们推出大规模拓扑扫描和分析系统的....
- base64编码和url编码
cuityang
base64url
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.io.UnsupportedEncodingException;
- web应用集群Session保持
dalan_123
session
关于使用 memcached 或redis 存储 session ,以及使用 terracotta 服务器共享。建议使用 redis,不仅仅因为它可以将缓存的内容持久化,还因为它支持的单个对象比较大,而且数据类型丰富,不只是缓存 session,还可以做其他用途,一举几得啊。1、使用 filter 方法存储这种方法比较推荐,因为它的服务器使用范围比较多,不仅限于tomcat ,而且实现的原理比较简
- Yii 框架里数据库操作详解-[增加、查询、更新、删除的方法 'AR模式']
dcj3sjt126com
数据库
public function getMinLimit () { $sql = "..."; $result = yii::app()->db->createCo
- solr StatsComponent(聚合统计)
eksliang
solr聚合查询solr stats
StatsComponent
转载请出自出处:http://eksliang.iteye.com/blog/2169134
http://eksliang.iteye.com/ 一、概述
Solr可以利用StatsComponent 实现数据库的聚合统计查询,也就是min、max、avg、count、sum的功能
二、参数
- 百度一道面试题
greemranqq
位运算百度面试寻找奇数算法bitmap 算法
那天看朋友提了一个百度面试的题目:怎么找出{1,1,2,3,3,4,4,4,5,5,5,5} 找出出现次数为奇数的数字.
我这里复制的是原话,当然顺序是不一定的,很多拿到题目第一反应就是用map,当然可以解决,但是效率不高。
还有人觉得应该用算法xxx,我是没想到用啥算法好...!
还有觉得应该先排序...
还有觉
- Spring之在开发中使用SpringJDBC
ihuning
spring
在实际开发中使用SpringJDBC有两种方式:
1. 在Dao中添加属性JdbcTemplate并用Spring注入;
JdbcTemplate类被设计成为线程安全的,所以可以在IOC 容器中声明它的单个实例,并将这个实例注入到所有的 DAO 实例中。JdbcTemplate也利用了Java 1.5 的特定(自动装箱,泛型,可变长度
- JSON API 1.0 核心开发者自述 | 你所不知道的那些技术细节
justjavac
json
2013年5月,Yehuda Katz 完成了JSON API(英文,中文) 技术规范的初稿。事情就发生在 RailsConf 之后,在那次会议上他和 Steve Klabnik 就 JSON 雏形的技术细节相聊甚欢。在沟通单一 Rails 服务器库—— ActiveModel::Serializers 和单一 JavaScript 客户端库——&
- 网站项目建设流程概述
macroli
工作
一.概念
网站项目管理就是根据特定的规范、在预算范围内、按时完成的网站开发任务。
二.需求分析
项目立项
我们接到客户的业务咨询,经过双方不断的接洽和了解,并通过基本的可行性讨论够,初步达成制作协议,这时就需要将项目立项。较好的做法是成立一个专门的项目小组,小组成员包括:项目经理,网页设计,程序员,测试员,编辑/文档等必须人员。项目实行项目经理制。
客户的需求说明书
第一步是需
- AngularJs 三目运算 表达式判断
qiaolevip
每天进步一点点学习永无止境众观千象AngularJS
事件回顾:由于需要修改同一个模板,里面包含2个不同的内容,第一个里面使用的时间差和第二个里面名称不一样,其他过滤器,内容都大同小异。希望杜绝If这样比较傻的来判断if-show or not,继续追究其源码。
var b = "{{",
a = "}}";
this.startSymbol = function(a) {
- Spark算子:统计RDD分区中的元素及数量
superlxw1234
sparkspark算子Spark RDD分区元素
关键字:Spark算子、Spark RDD分区、Spark RDD分区元素数量
Spark RDD是被分区的,在生成RDD时候,一般可以指定分区的数量,如果不指定分区数量,当RDD从集合创建时候,则默认为该程序所分配到的资源的CPU核数,如果是从HDFS文件创建,默认为文件的Block数。
可以利用RDD的mapPartitionsWithInd
- Spring 3.2.x将于2016年12月31日停止支持
wiselyman
Spring 3
Spring 团队公布在2016年12月31日停止对Spring Framework 3.2.x(包含tomcat 6.x)的支持。在此之前spring团队将持续发布3.2.x的维护版本。
请大家及时准备及时升级到Spring
- fis纯前端解决方案fis-pure
zccst
JavaScript
作者:zccst
FIS通过插件扩展可以完美的支持模块化的前端开发方案,我们通过FIS的二次封装能力,封装了一个功能完备的纯前端模块化方案pure。
1,fis-pure的安装
$ fis install -g fis-pure
$ pure -v
0.1.4
2,下载demo到本地
git clone https://github.com/hefangshi/f