Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool testSymmetric(TreeNode* left, TreeNode* right) { if(left==NULL&&right==NULL) return true; else if(left==NULL&&right!=NULL) return false; else if(left!=NULL&&right==NULL) return false; else if(left!=NULL&&right!=NULL&&left->val!=right->val) return false; else return testSymmetric(left->left,right->right)&&testSymmetric(left->right,right->left); } bool isSymmetric(TreeNode *root) { if (root==NULL) return true; else return testSymmetric(root->left,root->right); } };