[树链剖分+MST] LightOJ 1101 - A Secret Mission

LightOJ 1101 - A Secret Mission

题意:给一个n个点,m条边的无向连通图,每条边有一个权值,然后有q个询问,问从a到b的最小代价,一条路径的代价定义为这条路径上的最大的边权值。

题解:这个题一开始想了很久dijkstra,以为是某种应用或者可以快速更新,然而并没有什么结果。

后来就想暴力吧,想优化,于是先按边权值排序,然后加边,如果边两点已经连通了,那么就肯定没必要加这条边了,然后发现这不是kruskal吗?然后就变成一棵树了,然后就变成查询树上两点最大值了,然后就变成树链剖分模板题了...然后就AC了...代码几乎和上篇一样...

#include<bits/stdc++.h>
using namespace std;
const int N = 50005;
struct eg{
    int v, nex, w;
    eg(){}
    eg(int a, int b, int c){ v = a, w = b, nex = c; }
}edg[N<<2];
int fir[N], ecnt;
void add(int a, int b, int c){
    edg[ecnt] = eg(b, c, fir[a]);
    fir[a] = ecnt++;
    edg[ecnt] = eg(a, c, fir[b]);
    fir[b] = ecnt++;
}
int fa[N], dep[N], siz[N], son[N], root;
int tree[N<<2];
void dfs(int rt){
    siz[rt] = 1, son[rt] = 0;
    for(int k = fir[rt]; k != -1; k = edg[k].nex){
        if(edg[k].v != fa[rt]){
            fa[edg[k].v] = rt;
            dep[edg[k].v] = dep[rt] + 1;
            dfs(edg[k].v);
            if(siz[edg[k].v] > siz[son[rt]]) son[rt] = edg[k].v;
            siz[rt] += siz[edg[k].v];
        }
    }
}
int w[N<<2], top[N],  cnt; //w[]为到线段树的映射
void dfs2(int rt, int tp){
    w[rt] = ++cnt; top[rt] = tp;
    if(son[rt]) dfs2(son[rt], top[rt]);
    for(int k = fir[rt]; k != -1; k = edg[k].nex){
        if(edg[k].v != son[rt] && edg[k].v != fa[rt]){ 
            dfs2(edg[k].v, edg[k].v);
        }
    }
}
void update(int rt, int l, int r, int pos, int val){
    if(l == r){
        tree[rt] = val;
        return;
    }
    int mid = (l+r) >> 1;
    if(pos <= mid) update(rt<<1, l, mid, pos, val);
    else update(rt<<1|1, mid+1, r, pos, val);
    tree[rt] = max(tree[rt<<1], tree[rt<<1|1]);
}
int n, m;
struct E{
    int u, v, w;
    bool operator < (E a) const{
        return w < a.w;
    }
}sav[N<<1];
int seed[N];
int find(int x){ return seed[x] < 0? x : seed[x] = find(seed[x]); }
int join(int a, int b){
    a = find(a), b = find(b);
    if(a == b) return 0;
    if(seed[a] > seed[b]) seed[a] = b;
    else seed[b] = a;
    return 1;
}
bool in[N<<1];
void init(){
    scanf("%d %d", &n, &m);
    memset(fir, -1, sizeof(fir));
    memset(siz, 0, sizeof(siz));
    memset(tree, 0, sizeof(tree));
    memset(seed, -1, sizeof(seed));
    root = (n+1)/2;
    fa[root] = cnt = ecnt = dep[root] = 0;
    int a, b, c;
    for(int i = 0; i < m; ++i) scanf("%d%d%d", &sav[i].u, &sav[i].v, &sav[i].w), in[i] = 0;
    sort(sav, sav+m);
    for(int i = 0; i < m; ++i){
        if(join(sav[i].u, sav[i].v)) add(sav[i].u, sav[i].v, sav[i].w), in[i] = 1;
    }
    dfs(root);
    dfs2(root, root);
    for(int i = 0; i < m; ++i){
        if(!in[i]) continue;
        if(dep[sav[i].u] > dep[sav[i].v]) swap(sav[i].u, sav[i].v);
        update(1, 1, cnt, w[sav[i].v], sav[i].w);
    }
}
int maxi(int rt, int l, int r, int ql, int qr){
    if( ql > r || qr < l) return 0;
    if(ql <= l && qr >= r) return tree[rt];
    int mid = (l+r) >> 1;
    return max(maxi(rt<<1, l, mid, ql, qr), maxi(rt<<1|1, mid+1, r, ql, qr));
}
int solve(int va, int vb){
    int f1 = top[va], f2 = top[vb], tmp = 0;
    while(f1 != f2){
        if(dep[f1] < dep[f2]){
            swap(f1, f2);
            swap(va, vb);
        }
        tmp = max(tmp, maxi(1, 1, cnt, w[f1], w[va]));
        va = fa[f1], f1 = top[va];
    }
    if(va == vb) return tmp;
    if(dep[va] > dep[vb]) swap(va, vb);
    return max(tmp, maxi(1, 1, cnt, w[son[va]], w[vb]));
}
int main(){
    int T, ca = 1;
    scanf("%d", &T);
    while(T--){
        init();
        int q;
        scanf("%d", &q);
        printf("Case %d:\n", ca++);
        while(q--){
            int a, b;
            scanf("%d%d", &a, &b);
            printf("%d\n", solve(a, b));
        }
    }
}


你可能感兴趣的:(ACM,树链剖分,lightoj)