POJ-1201-Intervals(差分约束)

Language: Default
Intervals
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 24357   Accepted: 9264

Description

You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. 
Write a program that: 
reads the number of intervals, their end points and integers c1, ..., cn from the standard input, 
computes the minimal size of a set Z of integers which has at least ci common elements with interval [ai, bi], for each i=1,2,...,n, 
writes the answer to the standard output. 

Input

The first line of the input contains an integer n (1 <= n <= 50000) -- the number of intervals. The following n lines describe the intervals. The (i+1)-th line of the input contains three integers ai, bi and ci separated by single spaces and such that 0 <= ai <= bi <= 50000 and 1 <= ci <= bi - ai+1.

Output

The output contains exactly one integer equal to the minimal size of set Z sharing at least ci elements with interval [ai, bi], for each i=1,2,...,n.

Sample Input

5
3 7 3
8 10 3
6 8 1
1 3 1
10 11 1

Sample Output

6

Source

Southwestern Europe 2002


首先讲一下什么是差分约束:

源自:http://www.cnblogs.com/void/archive/2011/08/26/2153928.html

比如给出三个不等式,b-a<=k1,c-b<=k2,c-a<=k3,求出c-a的最大值,我们可以把a,b,c转换成三个点,k1,k2,k3是边上的权,如图

POJ-1201-Intervals(差分约束)_第1张图片

由题我们可以得知,这个有向图中,由题b-a<=k1,c-b<=k2,得出c-a<=k1+k2,因此比较k1+k2和k3的大小,求出最小的就是c-a的最大值了

根据以上的解法,我们可能会猜到求解过程实际就是求从a到c的最短路径,没错的....简单的说就是从a到c沿着某条路径后把所有权值和k求出就是c -a<=k的一个

推广的不等式约束,既然这样,满足题目的肯定是最小的k,也就是从a到c最短距离...


总结一下:

//差分约束
//求最大值:变为x-y<=k的标准形式,求出最短路径
//求最小值:变为x-y>=k的标准形式,求出最长路径


回到本题:

大致题意:

给出数轴上的n个区间[ai,bi],每个区间都是连续的int区间。

现在要在数轴上任意取一堆元素,构成一个元素集合V

要求每个区间[ai,bi]和元素集合V的交集至少有ci不同的元素

求集合V最小的元素个数。


显然我们可以令S[i]为start->i区间与V交集的不同元素个数,

那么我们可以知道S[b] - S[a-1] >= c,又0<=S[i]-S[i-1]<=1;

所以得到以下三个约束关系:

//   S[b] - S[a-1] >= c
//   S[i] - S[i-1] >= 0
//   S[i-1] - S[i] >= -1

建图,题意求最小值,则求出最长路径即可。


CODE:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <set>
#include <queue>
#include <cmath>
#include <algorithm>
using namespace std;
#define INF 0x3f3f3f3f
#define bug cout<<"bug\n"
const int MAXN = 50007;
const int MAXM = 200007;
int head[MAXN],index;
struct node
{
    int v,next,cost;
} edge[MAXM];
void add_edge(int u,int v,int cost)
{
    edge[index].v=v;
    edge[index].cost=cost;
    edge[index].next=head[u];
    head[u]=index++;
}
bool vis[MAXN];
int dist[MAXN];
int SPFA(int s,int t)
{
    memset(vis,0,sizeof(vis));
    for(int i=s; i<=t; ++i)dist[i]=-INF;
    dist[s]=0;
    queue<int> q;
    while(!q.empty())q.pop();
    q.push(s);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        vis[u]=0;
        for(int i=head[u]; i+1; i=edge[i].next)
        {
            int v=edge[i].v;
            if(dist[v]<dist[u]+edge[i].cost)
            {
                dist[v]=dist[u]+edge[i].cost;
                if(!vis[v])
                {
                    vis[v]=1;
                    q.push(v);
                }
            }
        }
    }
    return dist[t];
}
//差分约束:- -
//求最大值:变为x-y<=k的标准形式, 求出最短路径
//求最小值:变为x-y>=k的标准形式,求出最长路径
//S[b] - S[a-1] >= c
//S[i] - S[i-1] >= 0
//S[i-1] - S[i] >= -1
int main()
{
    int n,a,b,c;
    while(scanf("%d",&n)!=EOF)
    {
        index=0;
        memset(head,-1,sizeof(head));
        int maxx=0,minx=INF;
        for(int i=0; i<n; ++i)
        {
            scanf("%d%d%d",&a,&b,&c);
            add_edge(a,b+1,c);
            minx=min(minx,a);
            maxx=max(b+1,maxx);
        }
        for(int i=minx; i<maxx; ++i)
        {
            add_edge(i,i+1,0);
            add_edge(i+1,i,-1);
        }
        cout<<SPFA(minx,maxx)<<endl;
    }
    return 0;
}



你可能感兴趣的:(C++,ACM,poj)