给出平面上的n个点,求一条直线,使得所有点在该直线的同一侧且所有点到该直线的距离和最小,输出该距离和。
要使所有点在该直线的同一侧,明显是直接利用凸包的边更优。所以枚举凸包的没条边,然后求距离和。直线一般式为Ax + By + C = 0.点(x0, y0)到直线的距离为
fabs(Ax0+By0+C)/sqrt(A*A+B*B).由于所有点在直线的同一侧,那么对于所有点,他们的(Ax0+By0+C)符号相同,显然可以累加出sumX和sumY,然后统一求和。
#include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<fstream> #include<sstream> #include<bitset> #include<vector> #include<string> #include<cstdio> #include<cmath> #include<stack> #include<queue> #include<stack> #include<map> #include<set> #define FF(i, a, b) for(int i=a; i<b; i++) #define FD(i, a, b) for(int i=a; i>=b; i--) #define REP(i, n) for(int i=0; i<n; i++) #define CLR(a, b) memset(a, b, sizeof(a)) #define debug puts("**debug**") #define LL long long #define PB push_back #define eps 1e-10 using namespace std; struct Point { double x, y; Point (double x=0, double y=0):x(x), y(y) {} }; typedef Point Vector; Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); } Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); } Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); } Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); } bool operator < (const Point& a, const Point& b) { return a.x < b.x || (a.x == b.x && a.y < b.y); } int dcmp(double x) { if(fabs(x) < eps) return 0; return x < 0 ? -1 : 1; } bool operator == (const Point& a, const Point& b) { return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0; } double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; } double Length(Vector A) { return sqrt(Dot(A, A)); } double Angel(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); } double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; } double Area2(Vector A, Vector B, Vector C) { return Cross(B-A, C-A); } //向量逆时针旋转 Vector Rotate(Vector A, double rad) { return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad)); } //求直线p+tv和q+tw的交点 Cross(v, w) == 0无交点 Point GetLineIntersection(Point p, Vector v, Point q, Vector w) { Vector u = p-q; double t = Cross(w, u) / Cross(v, w); return p + v*t; } //点p到直线ab的距离 double DistanceToLine(Point p, Point a, Point b) { Vector v1 = b - a, v2 = p - a; return fabs(Cross(v1, v2)) / Length(v1);//如果不带fabs 得到的是有向距离 } //点p到线段ab的距离 double DistanceToSegment(Point p, Point a, Point b) { if(a == b) return Length(p-a); Vector v1 = b-a, v2 = p-a, v3 = p-b; if(dcmp(Dot(v1, v2) < 0)) return Length(v2); else if(dcmp(Dot(v1, v3)) > 0) return Length(v3); else return fabs(Cross(v1, v2)) / Length(v1); } //点p在直线ab上的投影 Point GetLineProjection(Point p, Point a, Point b) { Vector v = b-a; return a + v*(Dot(v, p-a) / Dot(v, v)); } //点段相交判定 bool SegmentItersection(Point a1, Point a2, Point b1, Point b2) { double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1), c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1); return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0; } //点在线段上 bool OnSegment(Point p, Point a1, Point a2) { return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0; } //多变形面积 double PolygonArea(Point* p, int n) { double ret = 0; FF(i, 1, n-1) ret += Cross(p[i]-p[0], p[i+1]-p[0]); return ret/2; } Point read_point() { Point a; scanf("%lf%lf", &a.x, &a.y); return a; } double torad(double d)//角度转弧度 { return d/180 *acos(-1); } int ConvexHull(Point *p, int n, Point* ch)//凸包 { sort(p, p+n); int m = 0; REP(i, n) { while(m > 1 && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--; ch[m++] = p[i]; } int k = m; FD(i, n-2, 0) { while(m > k && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--; ch[m++] = p[i]; } if(n > 1) m--; return m; } void getLineABC(Point A, Point B, double& a, double& b, double& c)//直线两点式转一般式 { a = A.y-B.y, b = B.x-A.x, c = A.x*B.y-A.y*B.x; } const int maxn = 10001; int n, T; Point p[maxn], ch[maxn]; int main() { scanf("%d", &T); FF(kase, 1, T+1) { scanf("%d", &n); double X = 0, Y = 0, ans = 1e10; REP(i, n) p[i] = read_point(), X += p[i].x, Y += p[i].y; int m = ConvexHull(p, n, ch); ch[m] = ch[0]; REP(i, m) { double a, b, c; getLineABC(ch[i], ch[i+1], a, b, c); ans = min(ans, fabs(a*X+b*Y+c*n)/(sqrt(a*a+b*b))); } printf("Case #%d: %.3f\n", kase, n > 2 ? ans/n : 0); } return 0; }