UVA 11168 Airport(凸包)

给出平面上的n个点,求一条直线,使得所有点在该直线的同一侧且所有点到该直线的距离和最小,输出该距离和。

要使所有点在该直线的同一侧,明显是直接利用凸包的边更优。所以枚举凸包的没条边,然后求距离和。直线一般式为Ax + By + C = 0.点(x0, y0)到直线的距离为

fabs(Ax0+By0+C)/sqrt(A*A+B*B).由于所有点在直线的同一侧,那么对于所有点,他们的(Ax0+By0+C)符号相同,显然可以累加出sumX和sumY,然后统一求和。

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<fstream>
#include<sstream>
#include<bitset>
#include<vector>
#include<string>
#include<cstdio>
#include<cmath>
#include<stack>
#include<queue>
#include<stack>
#include<map>
#include<set>
#define FF(i, a, b) for(int i=a; i<b; i++)
#define FD(i, a, b) for(int i=a; i>=b; i--)
#define REP(i, n) for(int i=0; i<n; i++)
#define CLR(a, b) memset(a, b, sizeof(a))
#define debug puts("**debug**")
#define LL long long
#define PB push_back
#define eps 1e-10
using namespace std;

struct Point
{
    double x, y;
    Point (double x=0, double y=0):x(x), y(y) {}
};
typedef Point Vector;

Vector operator + (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator - (Vector A, Vector B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator * (Vector A, double p) { return Vector(A.x*p, A.y*p); }
Vector operator / (Vector A, double p) { return Vector(A.x/p, A.y/p); }

bool operator < (const Point& a, const Point& b)
{
    return a.x < b.x || (a.x == b.x && a.y < b.y);
}

int dcmp(double x)
{
    if(fabs(x) < eps) return 0;
    return x < 0 ? -1 : 1;
}

bool operator == (const Point& a, const Point& b)
{
    return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y) == 0;
}

double Dot(Vector A, Vector B) { return A.x*B.x + A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angel(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }

double Cross(Vector A, Vector B) { return A.x*B.y - A.y*B.x; }
double Area2(Vector A, Vector B, Vector C) { return Cross(B-A, C-A); }


//向量逆时针旋转
Vector Rotate(Vector A, double rad)
{
    return Vector(A.x*cos(rad)-A.y*sin(rad), A.x*sin(rad)+A.y*cos(rad));
}

//求直线p+tv和q+tw的交点 Cross(v, w) == 0无交点
Point GetLineIntersection(Point p, Vector v, Point q, Vector w)
{
    Vector u = p-q;
    double t = Cross(w, u) / Cross(v, w);
    return p + v*t;
}


//点p到直线ab的距离
double DistanceToLine(Point p, Point a, Point b)
{
    Vector v1 = b - a, v2 = p - a;
    return fabs(Cross(v1, v2)) / Length(v1);//如果不带fabs 得到的是有向距离
}

//点p到线段ab的距离
double DistanceToSegment(Point p, Point a, Point b)
{
    if(a == b) return Length(p-a);
    Vector v1 = b-a, v2 = p-a, v3 = p-b;
    if(dcmp(Dot(v1, v2) < 0)) return Length(v2);
    else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
    else return fabs(Cross(v1, v2)) / Length(v1);
}

//点p在直线ab上的投影
Point GetLineProjection(Point p, Point a, Point b)
{
    Vector v = b-a;
    return a + v*(Dot(v, p-a) / Dot(v, v));
}

//点段相交判定
bool SegmentItersection(Point a1, Point a2, Point b1, Point b2)
{
    double c1 = Cross(a2-a1, b1-a1), c2 = Cross(a2-a1, b2-a1),
    c3 = Cross(b2-b1, a1-b1), c4 = Cross(b2-b1, a2-b1);
    return dcmp(c1)*dcmp(c2) < 0 && dcmp(c3)*dcmp(c4) < 0;
}

//点在线段上
bool OnSegment(Point p, Point a1, Point a2)
{
    return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) < 0;
}

//多变形面积
double PolygonArea(Point* p, int n)
{
    double ret = 0;
    FF(i, 1, n-1) ret += Cross(p[i]-p[0], p[i+1]-p[0]);
    return ret/2;
}

Point read_point()
{
    Point a;
    scanf("%lf%lf", &a.x, &a.y);
    return a;
}

double torad(double d)//角度转弧度
{
    return d/180 *acos(-1);
}

int ConvexHull(Point *p, int n, Point* ch)//凸包
{
    sort(p, p+n);
    int m = 0;
    REP(i, n)
    {
        while(m > 1 && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--;
        ch[m++] = p[i];
    }
    int k = m;
    FD(i, n-2, 0)
    {
        while(m > k && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--;
        ch[m++] = p[i];
    }
    if(n > 1) m--;
    return m;
}

void getLineABC(Point A, Point B, double& a, double& b, double& c)//直线两点式转一般式
{
    a = A.y-B.y, b = B.x-A.x, c = A.x*B.y-A.y*B.x;
}

const int maxn = 10001;
int n, T;
Point p[maxn], ch[maxn];

int main()
{
    scanf("%d", &T);
    FF(kase, 1, T+1)
    {
        scanf("%d", &n);
        double X = 0, Y = 0, ans = 1e10;
        REP(i, n) p[i] = read_point(), X += p[i].x, Y += p[i].y;
        int m = ConvexHull(p, n, ch);
        ch[m] = ch[0];
        REP(i, m)
        {
            double a, b, c;
            getLineABC(ch[i], ch[i+1], a, b, c);
            ans = min(ans, fabs(a*X+b*Y+c*n)/(sqrt(a*a+b*b)));
        }
        printf("Case #%d: %.3f\n", kase, n > 2 ? ans/n : 0);
    }
    return 0;
}


 

你可能感兴趣的:(UVA 11168 Airport(凸包))