模拟退火算法求解旅行商问题

一. 爬山算法 ( Hill Climbing )

         介绍模拟退火前,先介绍爬山算法。爬山算法是一种简单的贪心搜索算法,该算法每次从当前解的临近解空间中选择一个最优解作为当前解,直到达到一个局部最优解。

         爬山算法实现很简单,其主要缺点是会陷入局部最优解,而不一定能搜索到全局最优解。如图1所示:假设C点为当前解,爬山算法搜索到A点这个局部最优解就会停止搜索,因为在A点无论向那个方向小幅度移动都不能得到更优的解。

模拟退火算法求解旅行商问题_第1张图片

图1

 


二. 模拟退火(SA,Simulated Annealing)思想

         爬山法是完完全全的贪心法,每次都鼠目寸光的选择一个当前最优解,因此只能搜索到局部的最优值。模拟退火其实也是一种贪心算法,但是它的搜索过程引入了随机因素。模拟退火算法以一定的概率来接受一个比当前解要差的解,因此有可能会跳出这个局部的最优解,达到全局的最优解。以图1为例,模拟退火算法在搜索到局部最优解A后,会以一定的概率接受到E的移动。也许经过几次这样的不是局部最优的移动后会到达D点,于是就跳出了局部最大值A。

         模拟退火算法描述:

         若J( Y(i+1) )>= J( Y(i) )  (即移动后得到更优解),则总是接受该移动

         若J( Y(i+1) )< J( Y(i) )  (即移动后的解比当前解要差),则以一定的概率接受移动,而且这个概率随着时间推移逐渐降低(逐渐降低才能趋向稳定)

  这里的“一定的概率”的计算参考了金属冶炼的退火过程,这也是模拟退火算法名称的由来。

  根据热力学的原理,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:

    P(dE) = exp( dE/(kT) )

  其中k是一个常数,exp表示自然指数,且dE<0。这条公式说白了就是:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(否则就不叫退火了),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。

  随着温度T的降低,P(dE)会逐渐降低。

  我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。

  关于爬山算法与模拟退火,有一个有趣的比喻:

  爬山算法:兔子朝着比现在高的地方跳去。它找到了不远处的最高山峰。但是这座山不一定是珠穆朗玛峰。这就是爬山算法,它不能保证局部最优值就是全局最优值。

  模拟退火:兔子喝醉了。它随机地跳了很长时间。这期间,它可能走向高处,也可能踏入平地。但是,它渐渐清醒了并朝最高方向跳去。这就是模拟退火。


下面给出模拟退火的伪代码表示。


三. 模拟退火算法伪代码

复制代码
代码
    
    
    
    
/* * J(y):在状态y时的评价函数值 * Y(i):表示当前状态 * Y(i+1):表示新的状态 * r: 用于控制降温的快慢 * T: 系统的温度,系统初始应该要处于一个高温的状态 * T_min :温度的下限,若温度T达到T_min,则停止搜索 */ while( T > T_min ) {   dE = J( Y(i+1) ) - J( Y(i) ) ;   if ( dE >= 0 ) //表达移动后得到更优解,则总是接受移动 Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动   else   { // 函数exp( dE/T )的取值范围是(0,1) ,dE/T越大,则exp( dE/T )也 if ( exp( dE/T ) > random( 0 , 1 ) ) Y(i+1) = Y(i) ; //接受从Y(i)到Y(i+1)的移动   }   T = r * T ; //降温退火 ,0<r<1 。r越大,降温越慢;r越小,降温越快   /*   * 若r过大,则搜索到全局最优解的可能会较高,但搜索的过程也就较长。若r过小,则搜索的过程会很快,但最终可能会达到一个局部最优值   */   i ++ ; }
复制代码

四. 使用模拟退火算法解决旅行商问题

  旅行商问题 ( TSP , Traveling Salesman Problem ) :有N个城市,要求从其中某个问题出发,唯一遍历所有城市,再回到出发的城市,求最短的路线。

  旅行商问题属于所谓的NP完全问题,精确的解决TSP只能通过穷举所有的路径组合,其时间复杂度是O(N!) 。

  使用模拟退火算法可以比较快的求出TSP的一条近似最优路径。(使用遗传算法也是可以的,我将在下一篇文章中介绍)模拟退火解决TSP的思路:

1. 产生一条新的遍历路径P(i+1),计算路径P(i+1)的长度L( P(i+1) )

2. 若L(P(i+1)) < L(P(i)),则接受P(i+1)为新的路径,否则以模拟退火的那个概率接受P(i+1) ,然后降温

3. 重复步骤1,2直到满足退出条件

  产生新的遍历路径的方法有很多,下面列举其中3种:

1. 随机选择2个节点,交换路径中的这2个节点的顺序。

2. 随机选择2个节点,将路径中这2个节点间的节点顺序逆转。

3. 随机选择3个节点m,n,k,然后将节点m与n间的节点移位到节点k后面。

详细描述如下:

模拟退火算法求解旅行商问题_第2张图片

五. 算法评价

        模拟退火算法是一种随机算法,并不一定能找到全局的最优解,可以比较快的找到问题的近似最优解。 如果参数设置得当,模拟退火算法搜索效率比穷举法要高。


代码如下:

#include <iostream>
#include <string.h>
#include <fstream>
#include <iterator>
#include <algorithm>
#include <limits.h>
#include <math.h>
#include <stdlib.h>

using namespace std;

const int nCities = 99; //城市数量
const double SPEED = 0.98;//退火速度
const int INITIAL_TEMP = 1000;//初始温度
const int L = 100 * nCities;//Markov 链的长度
struct node
{
	int num;
	int x;
	int y;
}nodes[nCities];

struct unit //一个解
{
	double length;//代价,总长度
	int path[nCities];//路径
	bool operator < ( const struct unit &other) const
	{
		return length < other.length;
	}
};

unit bestone = {INT_MAX, {0} };//最优解
double length_table[nCities][nCities];//distance

void init_dis(); // create matrix to storage the Distance each city
void  SA_TSP();
void CalCulate_length(unit &p);//计算长度
void print( unit &p);//打印一个解
void getNewSolution(unit &p);// 从邻域中获去一个新解
bool Accept(unit &bestone, unit &temp, double t);//新解以Metropolis 准则接受


int main(int argc, char* argv[])
{
	init_dis();
	SA_TSP();
	CalCulate_length(bestone);
	print(bestone);
	return 0;
}

//stl 中 generate 的辅助函数对象
class GenbyOne {
	public:
		GenbyOne (int _seed = -1): seed(_seed){}
		int operator() (){return seed += 1;}
	private:
		int seed;
};

void SA_TSP()
{
	srand(time(0));
	int i = 0;
	double r = SPEED;
	double t = INITIAL_TEMP;
	const double t_min = 0.001; //温度下限,若温度达到t_min ,则停止搜索

	//choose an initial solution ~
	unit temp;
	generate(temp.path, temp.path + nCities, GenbyOne(0));
	random_shuffle(temp.path, temp.path + nCities);
	CalCulate_length(temp);
	memcpy(&bestone, &temp, sizeof(temp));
	// while the stop criterion is not yet satisfied do
	while ( t > t_min )
	{
		for (i = 0; i < L; i++) 
		{

			getNewSolution(temp);
			if(Accept(bestone,temp, t))
			{
				memcpy(&bestone, &temp, sizeof(unit));
			}
			else
			{
				memcpy(&temp, &bestone, sizeof(unit));
			}
		}
		t *= r; //退火
	}
	return;
}

bool Accept(unit &bestone, unit &temp, double t)
{
	if (bestone.length > temp.length) 
	{
		return true;
	}
	else
	{
		if ((int)(exp((bestone.length- temp.length) / t) * 100) > (rand() % 101) ) 
		{
			return true;
		}
	}
	return false;
}

void getNewSolution(unit &p)
{
	int i = rand() % nCities;
	int j = rand() % nCities;
	if (i > j) 
	{
		int t = i;
		i = j;
		j = t;
	}
	else if (i == j)	
	{
		return;	
	}

	int choose = rand() % 3;
	if ( choose == 0) 
	{//交换
		int temp = p.path[i];
		p.path[i] = p.path[j];
		p.path[j] = temp;
	}
	else if (choose == 1) 
	{//置逆
		reverse(p.path + i, p.path + j);	 
	}
	else
	{//移位
		if (j+1 == nCities) //边界处不处理
		{
			return;
		}
		rotate(p.path + i, p.path + j, p.path + j + 1);	 
	}
	CalCulate_length(p);
}


void init_dis() // create matrix to storage the Distance each city
{
	int i, j;
	ifstream in("source.txt");
	for (i = 0; i < nCities; i++)
	{
		in >> nodes[i].num >> nodes[i].x >> nodes[i].y;
	}

	for (i = 0; i < nCities; i++)
	{
		length_table[i][i] = (double)INT_MAX;
		for (j = i + 1; j < nCities; j++)
		{
			length_table [i][j] = length_table[j][i] =sqrt( 
					(nodes[i].x - nodes[j].x) * (nodes[i].x - nodes[j].x) +
					(nodes[i].y - nodes[j].y) * (nodes[i].y - nodes[j].y) );
		}

	}

}

void CalCulate_length(unit &p)
{
	int j = 0;
	p.length = 0;
	for (j = 1; j < nCities; j++) 
	{
		p.length += length_table[ p.path[j-1] ][ p.path[j] ];
	}
	p.length += length_table[ p.path[nCities - 1] ][ p.path[0] ];

}

void print( unit &p)
{
	int i;
	cout << "代价是:" << p.length << endl;
	cout << "路径是:";
	for (i = 0; i < nCities; i++) 
	{
		cout << p.path[i] << " ";
	}
	cout << endl;
}


参考资料: http://www.cnblogs.com/heaad/  

你可能感兴趣的:(c,算法,Random)