UVA 10806 Dijkstra, Dijkstra.(最小费用最大流)

题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=1747


题面PDF


题目大意:

    从1点到N点走2次,两次的路径要求不能经过任意一条重边,求总代价最小,若不能则输出”Back to jail“。


解题:

    很容易以为是最短路,走两遍最短路,第一遍过程中记录下最短路上的边,删去。网上很多题解都说明显是错的,但似乎没有给出证明。个人认为应该是,当同时存在两条以上最短路时,任选一条,会造成错误,若最短路唯一,这样做应该是对的。


代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#define inf 0x3f3f3f3f
using namespace std;
int mapp[105][105],cnt;
int dist[105],path[105];
bool vis[105];
struct edge
{
    int aft,bef;
}store[10010];
void init(int n)
{
    cnt=0;
    memset(vis,0,sizeof(vis));
    memset(mapp,inf,sizeof(mapp));
    memset(dist,inf,sizeof(dist));
    memset(path,0,sizeof(path));
    for(int i=1;i<=n;i++)
      mapp[i][i]=0;
}
void dijkstra(int s,int n)
{
    int tmp,minn,p;
    vis[s]=1;
    dist[s]=0;
    for(int i=1;i<=n;i++)
    {
      tmp=mapp[s][i];
      if(s!=i&&(tmp<inf))
      {
        cnt++;
        store[cnt].aft=i;
        store[cnt].bef=s;
        path[i]=cnt;
        dist[i]=tmp;
      }
    }
    while(1)
    {
        minn=inf;
        for(int i=1;i<=n;i++)
        {
           if(!vis[i]&&dist[i]<minn)
           {
              minn=dist[i];
              p=i;
           }
        }
        if(minn==inf)break;
        vis[p]=1;
        for(int i=1;i<=n;i++)
        {
            tmp=dist[p]+mapp[p][i];
            if(tmp<dist[i])
            {
                dist[i]=tmp;
                cnt++;
                store[cnt].bef=p;
                store[cnt].aft=i;
                path[i]=cnt;
            }
        }
    }
}
void update(int n)
{
   int bef,x,a,b,v;
   bef=n;
   while(1)
   {
      x=path[bef];
      a=store[x].aft;
      b=store[x].bef;
      mapp[a][b]=inf;
      mapp[b][a]=inf;
      bef=b;
      if(bef==1)break;
   }
}
int main()
{
	int n,m,a,b,v,ans1,ans;
	while(scanf("%d",&n))
	{
	   if(n==0)break;
	   scanf("%d",&m);
	   init(n);
	   for(int i=0;i<m;i++)
	   {
	       scanf("%d%d%d",&a,&b,&v);
	       mapp[a][b]=mapp[b][a]=v;
       }
       dijkstra(1,n);
       if(dist[n]==inf)
         printf("Back to jail\n");
       else
       {
           update(n);
           ans1=dist[n];
           cnt=0;
           memset(vis,0,sizeof(vis));
           memset(dist,inf,sizeof(dist));
           memset(path,0,sizeof(path));
           for(int i=1;i<=n;i++)
              mapp[i][i]=0;
           dijkstra(1,n);
           if(dist[n]==inf)
             printf("Back to jail\n");
           else
           {
              ans=dist[n]+ans1;
              printf("%d\n",ans);
           }
       }
    }
	return 0;
}


正解:

   其实是非常标准的费用流,源点到1为容量为2,代价为0,,N到汇点容量为2,代价为0。然后每条边容量为1,代价即为其代价,跑一遍费用流即可。


代码:

#include <iostream>
#include <cstring>
#include <cstdio>
#include <queue>
using namespace std;
int sumFlow;
const int MAXN = 105;
const int MAXM = 1000200;
const int INF = 1000000000;
struct Edge
{
    int u;
    int v;
    int cap;
    int cost;
    int next;
}edge[MAXM<<2];
int NE;
int head[MAXN], dist[MAXN], pp[MAXN];
bool vis[MAXN];
void init()
{
    NE=0;
    memset(head,-1,sizeof(head));
}
void addedge(int u,int v,int cap,int cost)
{
    edge[NE].u=u;edge[NE].v=v;edge[NE].cap=cap;edge[NE].cost=cost;
    edge[NE].next=head[u];head[u]=NE++;
    edge[NE].u=v;edge[NE].v=u;edge[NE].cap=0;edge[NE].cost=-cost;
    edge[NE].next=head[v];head[v]=NE++;
}
bool SPFA(int s,int t,int n)
{
    int i,u,v;
    queue<int>qu;
    memset(vis,false,sizeof(vis));
    memset(pp,-1,sizeof(pp));
    for(i=0;i<=n;i++)
        dist[i]=INF;
    vis[s]=true;
    dist[s]=0;
    qu.push(s);
    while(!qu.empty())
    {
        u=qu.front();
        qu.pop();
        vis[u]=false;
        for(i=head[u];i!=-1;i=edge[i].next)
        {
            v=edge[i].v;
            if(edge[i].cap&&dist[v]>dist[u]+edge[i].cost)
            {
                dist[v]=dist[u]+edge[i].cost;
                pp[v]=i;
                if(!vis[v])
                {
                    qu.push(v);
                    vis[v]=true;
                }
            }
        }
    }
    if(dist[t]==INF)
        return false;
    return true;
}
int MCMF(int s,int t,int n)
{
    int flow=0; // 总流量
    int i,minflow,mincost;
    mincost=0;
    while(SPFA(s,t,n))
    {
        minflow=INF+1;
        for(i=pp[t];i!=-1;i=pp[edge[i].u])
            if(edge[i].cap<minflow)
                minflow=edge[i].cap;
        flow+=minflow;
        for(i=pp[t];i!=-1;i=pp[edge[i].u])
        {
            edge[i].cap-=minflow;
            edge[i^1].cap+=minflow;
        }
        mincost+=dist[t]*minflow;
    }
    sumFlow=flow; // 最大流
    if(sumFlow<2)
      return -1;
    else
    return mincost;
}
int main()
{
    int n,m;
    int u,v,c;
    while(scanf("%d",&n))
    {
        if(n==0)break;
        scanf("%d",&m);
        init();
        int S=0;
        int T=n+1;
        for(int i=0;i<m;i++)
        {
           scanf("%d%d%d",&u,&v,&c);
           addedge(u,v,1,c);
           addedge(v,u,1,c);
        }
        addedge(S,1,2,0);
        addedge(n,T,2,0);
        int ans=MCMF(S,T,T+1);
        if(ans==-1)
          printf("Back to jail\n");
        else
          printf("%d\n",ans);
    }
    return 0;
}


你可能感兴趣的:(入门,费用流)