题意:
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
题解:
初始方程 (x+mt)-(y+nt)=pL -> (n-m)t+pL=(x+y);
令A=n-m ,B=x-y 那么 At=B(mod L)
#include<iostream> #include<math.h> #include<stdio.h> #include<algorithm> #include<string.h> #include<string> #include<vector> #include<queue> #include<map> #include<set> #include<stack> #define B(x) (1<<(x)) using namespace std; typedef long long ll; typedef unsigned long long ull; typedef unsigned ui; const int oo = 0x3f3f3f3f; //const ll OO = 0x3f3f3f3f3f3f3f3f; const double eps = 1e-9; #define lson rt<<1 #define rson rt<<1|1 void cmax(int& a, int b){ if (b > a)a = b; } void cmin(int& a, int b){ if (b < a)a = b; } void cmax(ll& a, ll b){ if (b > a)a = b; } void cmin(ll& a, ll b){ if (b < a)a = b; } void cmax(double& a, double b){ if (a - b < eps) a = b; } void cmin(double& a, double b){ if (b - a < eps) a = b; } void add(int& a, int b, int mod){ a = (a + b) % mod; } void add(ll& a, ll b, ll mod){ a = (a + b) % mod; } const ll MOD = 1000000007; const int maxn = 2100; ll exgcd(ll a, ll b, ll &x, ll &y){ if (b == 0){ x = 1; y = 0; return a; } ll d = exgcd(b, a % b, x, y); ll t = x; x = y; y = t - a / b * y; return d; } int main(){ //freopen("E:\\read.txt", "r", stdin); ll x, y, m, n, L; while (scanf("%lld %lld %lld %lld %lld", &x, &y, &m, &n, &L) != EOF){ ll a = 0, b = 0; ll M = exgcd(n - m, L, a, b); if ((x - y) % M != 0 || n == m) printf("Impossible\n"); else{ a = a*((x - y) / M); a = (a % (L / M) + (L / M)) % (L / M); printf("%lld\n", a); } } return 0; }