Bloom Filter算法和实现
基本概念:
Bloom Filter是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter的这种高效是有一定代价的:在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter不适合那些“零错误”的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter通过极少的错误换取了存储空间的极大节省。
集合表示和元素查询:
下面我们具体来看Bloom Filter是如何用位数组表示集合的。初始状态时,Bloom Filter是一个包含m位的位数组,每一位都置为0。
为了表达S={x1, x2,…,xn}这样一个n个元素的集合,Bloom Filter使用k个相互独立的哈希函数(Hash Function),它们分别将集合中的每个元素映射到{1,…,m}的范围中。对任意一个元素x,第i个哈希函数映射的位置hi(x)就会被置为1(1≤i≤k)。注意,如果一个位置多次被置为1,那么只有第一次会起作用,后面几次将没有任何效果。在下图中,k=3,且有两个哈希函数选中同一个位置(从左边数第五位)。
判断y是否属于这个集合时,我们对y应用k次哈希函数,如果所有hi(y)的位置都是1(1≤i≤k),那么我们就认为y是集合中的元素,否则就认为y不是集合中的元素。下图中y1就不是集合中的元素。y2或者属于这个集合,或者刚好是一个false positive。
假设要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。为了避免形成“环”,就需要知道蜘蛛已经访问过那些URL。给一个URL,怎样知道蜘蛛是否已经访问过呢?稍微想想,就会有如下几种方案:
1. 将访问过的URL保存到数据库。
2. 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。
3. URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。
4. Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。
方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。
以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。
方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?
方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。
方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。
方法4消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。
实质上上面的算法都忽略了一个重要的隐含条件:允许小概率的出错,不一定要100%准确!也就是说少量url实际上没有没网络蜘蛛访问,而将它们错判为已访问的代价是很小的——大不了少抓几个网页呗。
应用案例:
1、网络蜘蛛(Spider)的URL过滤,网络蜘蛛通常有一个URL列表,保存着将要下载和已经下载的网页的URL,网络蜘蛛下载了一个网页,从网页中提取到新的URL后,需要判断该URL是否已经存在于列表中。此时,Bloom-Filter 算法是最好的选择。
2、Google 著名的分布式数据库 Bigtable 使用了布隆过滤器来查找不存在的行或列,以减少磁盘查找的IO次数。
3、Squid 网页代理缓存服务器在 cachedigests 中使用了也布隆过滤器。
4、Venti 文档存储系统也采用布隆过滤器来检测先前存储的数据。
5、SPIN 模型检测器也使用布隆过滤器在大规模验证问题时跟踪可达状态空间。
6、Google Chrome浏览器使用了布隆过滤器加速安全浏览服务。
7、在很多Key-Value系统中也使用了布隆过滤器来加快查询过程,如 Hbase,Accumulo,Leveldb,一般而言,Value 保存在磁盘中,访问磁盘需要花费大量时间,然而使用布隆过滤器可以快速判断某个Key对应的Value是否存在,因此可以避免很多不必要的磁盘IO操作,只是引入布隆过滤器会带来一定的内存消耗。
8、Proxy-Cache
在Internet Cache Protocol中的Proxy-Cache很多都是使用Bloom Filter存储URLs,除了高效的查询外,还能很方便得传输交换Cache信息。
9、网络应用
P2P网络中查找资源操作,可以对每条网络通路保存Bloom Filter,当命中时,则选择该通路访问。
广播消息时,可以检测某个IP是否已发包。
检测广播消息包的环路,将Bloom Filter保存在包里,每个节点将自己添加入Bloom Filter。
信息队列管理,使用Counter Bloom Filter管理信息流量。
10、垃圾邮件地址过滤
像网易,QQ这样的公众电子邮件(email)提供商,总是需要过滤来自发送垃圾邮件的人(spamer)的垃圾邮件。一个办法就是记录下那些发垃圾邮件的 email地址。由于那些发送者不停地在注册新的地址,全世界少说也有几十亿个发垃圾邮件的地址,将他们都存起来则需要大量的网络服务器。
如果用哈希表,每存储一亿个 email地址,就需要 1.6GB的内存(用哈希表实现的具体办法是将每一个 email地址对应成一个八字节的信息指纹,然后将这些信息指纹存入哈希表,由于哈希表的存储效率一般只有 50%,因此一个 email地址需要占用十六个字节。一亿个地址大约要 1.6GB,即十六亿字节的内存)。因此存贮几十亿个邮件地址可能需要上百 GB的内存。
而Bloom Filter只需要哈希表 1/8到 1/4 的大小就能解决同样的问题。BloomFilter决不会漏掉任何一个在黑名单中的可疑地址。而至于误判问题,常见的补救办法是在建立一个小的白名单,存储那些可能别误判的邮件地址。
开源代码:Google Guava类库有一个BloomFilter的实现
相关扩展:
Counting filters
基本的布隆过滤器不支持删除(Deletion)操作,但是 Counting filters 提供了一种可以不用重新构建布隆过滤器但却支持元素删除操作的方法。在Counting filters中原来的位数组中的每一位由 bit 扩展为 n-bit 计数器,实际上,基本的布隆过滤器可以看作是只有一位的计数器的Countingfilters。原来的插入操作也被扩展为把 n-bit 的位计数器加1,查找操作即检查位数组非零即可,而删除操作定义为把位数组的相应位减1,但是该方法也有位的算术溢出问题,即某一位在多次删除操作后可能变成负值,所以位数组大小 m 需要充分大。另外一个问题是Counting filters不具备伸缩性,由于Counting filters不能扩展,所以需要保存的最大的元素个数需要提前知道。否则一旦插入的元素个数超过了位数组的容量,false positive的发生概率将会急剧增加。当然也有人提出了一种基于D-left Hash 方法实现支持删除操作的布隆过滤器,同时空间效率也比Counting filters高。
Data synchronization
Byers等人提出了使用布隆过滤器近似数据同步。
Bloomier filters
Chazelle 等人提出了一个通用的布隆过滤器,该布隆过滤器可以将某一值与每个已经插入的元素关联起来,并实现了一个关联数组Map。与普通的布隆过滤器一样,Chazelle实现的布隆过滤器也可以达到较低的空间消耗,但同时也会产生false positive,不过,在Bloomier filter中,某 key 如果不在 map 中,falsepositive在会返回时会被定义出的。该Map 结构不会返回与 key 相关的在 map 中的错误的值。
Compact approximators
Stable Bloom filters
Scalable Bloom filters
Attenuated Bloom filters