hdu4621 Warm up(边双连通缩点+树的直径)

给定一张无向图,问现在添加一条边后可以使得图中还存在最少的桥边是多少。

思路:因为图是连通的,我们只需要把图缩点后形成一棵树(这里的边是原图中的桥)。然后求出这棵树的直径(经典问题),最后就是ans = bridge - Radius与0取最大。

特别注意下重边的处理。

/*****************************************
Author      :Crazy_AC(JamesQi)
Time        :2016
File Name   :
*****************************************/
// #pragma comment(linker, "/STACK:1024000000,1024000000")
#include <iostream>
#include <algorithm>
#include <iomanip>
#include <sstream>
#include <string>
#include <stack>
#include <queue>
#include <deque>
#include <vector>
#include <map>
#include <set>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <climits>
using namespace std;
#define MEM(x,y) memset(x, y,sizeof x)
#define pk push_back
#define lson rt << 1
#define rson rt << 1 | 1
#define bug cout << "BUG HERE\n"
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int,int> ii;
typedef pair<ii,int> iii;
const double eps = 1e-8;
const int inf = 1 << 30;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
int nCase = 0;
const int maxn = 2e5 + 10;
const int maxm = 1e6 + 10;
struct Edge {
	int from, to, nxt;
	Edge() {}
	Edge(int from,int to,int nxt) : from(from), to(to), nxt(nxt) {}
}edges[maxm*2];
int head[maxn], ecnt;
int n, m;


int pre[maxn], low[maxn], instack[maxn], times;
stack<int> st;
int belong[maxn], black;
void input() {
	memset(head, -1,sizeof head), ecnt = 0;
	memset(pre, -1,sizeof pre);
	memset(instack, 0,sizeof instack);
	times = 0;
	black = 0;
	int u, v;
	for (int i = 1;i <= m;++i) {
		scanf("%d%d",&u,&v);
		edges[ecnt] = Edge(u, v, head[u]), head[u] = ecnt++;
		edges[ecnt] = Edge(v, u, head[v]), head[v] = ecnt++;
	}
}
set<ii> s;
void Tarjan(int u,int fa) {
	instack[u] = 1;
	st.push(u);
	pre[u] = low[u] = ++times;
	bool first = true;
	for (int i = head[u];~i;i = edges[i].nxt) {
		Edge& e = edges[i];
		if (e.to == fa && first) {//处理回边
			first = false;
			continue;
		}
		if (pre[e.to] == -1) {
			Tarjan(e.to, u);
			low[u] = min(low[u], low[e.to]);
		}else if (pre[e.to] > 0 && instack[e.to]) low[u] = min(low[u], pre[e.to]);
	}

	if (pre[u] == low[u])
	{
		black++;
		while(true) {
			int x = st.top();
			st.pop();
			belong[x] = black;
			instack[x] = 0;
			if (u == x) break;
		}
	}
}
vector<int> G[maxn], vec;
int Maxdep;
void dfs(int u,int depth) {
	instack[u] = 0;
	Maxdep = max(Maxdep, depth);
	for (int i = 0;i < G[u].size();++i) {
		int v = G[u][i];
		if (!instack[v]) continue;
		dfs(v, depth + 1);
	}
}
void solve() {
	s.clear();
	for (int i = 1;i <= n;++i)
		if (pre[i] == -1) Tarjan(i, -1);
	// for (int i = 1;i <= n;++i)
	// 	printf("%4d", belong[i]);
	// puts("");
	for (int i = 0;i < 2*m;i += 2) {
		int u = belong[edges[i].from];//hash 后的编号
		int v = belong[edges[i].to];
		if (u != v) {
			// printf("%d %d\n", u, v);
			if (u < v) swap(u, v);
			s.insert(ii(u, v));
		}
	}
	if (s.size() == 0 || s.size() == 1)
		puts("0");
	else {
		// bug;
		for (int i = 1;i <= black;++i)
			G[i].clear();
		vec.clear();
		int u, v;
		set<ii> :: iterator it;
		for (it = s.begin();it != s.end();++it) {//桥边
			u = it->first;
			v = it->second;
			G[u].push_back(v);
			G[v].push_back(u);
		}
		memset(instack, 0,sizeof instack);
		queue<int> que;
		que.push(1);
		while(!que.empty()) {
			u = que.front(), que.pop();
			vec.push_back(u);
			instack[u] = 1;
			for (int i = 0;i < G[u].size();++i) {
				v = G[u][i];
				if (instack[v]) continue;
				que.push(v);
			}
		}
		// printf("u = %d\n", u);
		u = vec[vec.size() - 1];
		Maxdep = 0;
		dfs(u, 0);
		// printf("Maxdep = %d\n", Maxdep);
		cout << s.size() - Maxdep << endl;
	}
}
int main(int argc, const char * argv[])
{	
	// freopen("in.txt","r",stdin);
	// freopen("out.txt","w",stdout);
	while(scanf("%d%d",&n,&m) == 2 && (n + m)) {
		input();
		solve();
	}
	return 0;
}


你可能感兴趣的:(树的直径,双连通缩点)