Caffe 中的 layer 是组成 net 的 component . laye 必须执行向前传播函数,即输入 Blob bottom,产生一个输出 Blob top。 绝大多数layer 要执行反向传播函数,即计算关于输入 Blob 的 error 梯度 diff .
首先让我们回顾一下定义在caffe.proto中的Message LayerParameter:
message LayerParameter {
optional string name = 1; // the layer name
optional string type = 2; // the layer type
repeated string bottom = 3; // the name of each bottom blob
repeated string top = 4; // the name of each top blob
optional Phase phase = 10; // The train / test phase for computation.
// The amount of weight to assign each top blob in the objective.
// Each layer assigns a default value, usually of either 0 or 1,
// to each top blob.
repeated float loss_weight = 5;
// Specifies training parameters (multipliers on global learning constants,
// and the name and other settings used for weight sharing).
repeated ParamSpec param = 6;
// The blobs containing the numeric parameters of the layer.
// See detials in message BlobProto
repeated BlobProto blobs = 7;
// Rules controlling whether and when a layer is included in the network,
// based on the current NetState. You may specify a non-zero number of rules
// to include OR exclude, but not both. If no include or exclude rules are
// specified, the layer is always included. If the current NetState meets
// ANY (i.e., one or more) of the specified rules, the layer is
// included/excluded.
repeated NetStateRule include = 8;
repeated NetStateRule exclude = 9;
// Parameters for data pre-processing.
// See detials in message TransformationParameter
optional TransformationParameter transform_param = 100;
// Parameters shared by loss layers.
// See detials in message LossParameter
optional LossParameter loss_param = 101;
// Layer type-specific parameters.
// Note: certain layers may have more than one computational engine
// for their implementation. These layers include an Engine type and
// engine parameter for selecting the implementation.
// The default for the engine is set by the ENGINE switch at compile-time.
optional AccuracyParameter accuracy_param = 102;
optional ArgMaxParameter argmax_param = 103;
optional ConcatParameter concat_param = 104;
optional ContrastiveLossParameter contrastive_loss_param = 105;
optional ConvolutionParameter convolution_param = 106;
optional DataParameter data_param = 107;
optional DropoutParameter dropout_param = 108;
optional DummyDataParameter dummy_data_param = 109;
optional EltwiseParameter eltwise_param = 110;
optional ExpParameter exp_param = 111;
optional HDF5DataParameter hdf5_data_param = 112;
optional HDF5OutputParameter hdf5_output_param = 113;
optional HingeLossParameter hinge_loss_param = 114;
optional ImageDataParameter image_data_param = 115;
optional InfogainLossParameter infogain_loss_param = 116;
optional InnerProductParameter inner_product_param = 117;
optional LRNParameter lrn_param = 118;
optional MemoryDataParameter memory_data_param = 119;
optional MVNParameter mvn_param = 120;
optional PoolingParameter pooling_param = 121;
optional PowerParameter power_param = 122;
optional PReLUParameter prelu_param = 131;
optional PythonParameter python_param = 130;
optional ReLUParameter relu_param = 123;
optional SigmoidParameter sigmoid_param = 124;
optional SoftmaxParameter softmax_param = 125;
optional SliceParameter slice_param = 126;
optional TanHParameter tanh_param = 127;
optional ThresholdParameter threshold_param = 128;
optional WindowDataParameter window_data_param = 129;
}
explicit Layer(const LayerParameter& param)
: layer_param_(param) {
// Set phase and copy blobs (if there are any).
phase_ = param.phase();
if (layer_param_.blobs_size() > 0) {
blobs_.resize(layer_param_.blobs_size());
for (int i = 0; i < layer_param_.blobs_size(); ++i) {
blobs_[i].reset(new Blob<Dtype>());
blobs_[i]->FromProto(layer_param_.blobs(i));
}
}
}//用protobuf 传入的参数对blobs_ 做初始化,blobs_ 是一个vector 存放指向Blob类的智能指针。
virtual void LayerSetUp(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {}
用于各个layer的初始化,不同的layer定义不同,在这里只做了声明,在具体的layer中定义。
template <typename Dtype>
inline Dtype Layer<Dtype>::Forward(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
Dtype loss = 0;
switch (Caffe::mode()) {
case Caffe::CPU:
Forward_cpu(bottom, top);//对输入的blob bottom 进行前向传播,计算输出blob top 或者loss,具体layer具体定义。
for (int top_id = 0; top_id < top.size(); ++top_id) {
if (!this->loss(top_id)) { continue; }
const int count = top[top_id]->count();
const Dtype* data = top[top_id]->cpu_data();
const Dtype* loss_weights = top[top_id]->cpu_diff();
loss += caffe_cpu_dot(count, data, loss_weights);
}
break;
case Caffe::GPU:
Forward_gpu(bottom, top);
#ifndef CPU_ONLY
for (int top_id = 0; top_id < top.size(); ++top_id) {
if (!this->loss(top_id)) { continue; }
const int count = top[top_id]->count();
const Dtype* data = top[top_id]->gpu_data();
const Dtype* loss_weights = top[top_id]->gpu_diff();
Dtype blob_loss = 0;
caffe_gpu_dot(count, data, loss_weights, &blob_loss);
loss += blob_loss;
}
#endif
break;
default:
LOG(FATAL) << "Unknown caffe mode.";
}
return loss;
}
对输入的blob bottom 进行前向传播,计算输出blob top 或者loss,具体layer具体定义。
template <typename Dtype>
inline void Layer<Dtype>::Backward(const vector<Blob<Dtype>*>& top,
const vector<bool>& propagate_down,
const vector<Blob<Dtype>*>& bottom) {
switch (Caffe::mode()) {
case Caffe::CPU:
Backward_cpu(top, propagate_down, bottom);
//根据blob top 的error 梯度(diff)计算bottom 的 error 梯度。 propagate_down 是长度 和bottom 相同的vector ,用于控制是否需要对对应的bottom 元素传播梯度。具体layer具体定义。
break;
case Caffe::GPU:
Backward_gpu(top, propagate_down, bottom);
break;
default:
LOG(FATAL) << "Unknown caffe mode.";
}
}
// Serialize LayerParameter to protocol buffer
template <typename Dtype>
void Layer<Dtype>::ToProto(LayerParameter* param, bool write_diff) {
param->Clear();
param->CopyFrom(layer_param_);
param->clear_blobs();
for (int i = 0; i < blobs_.size(); ++i) {
blobs_[i]->ToProto(param->add_blobs(), write_diff);
}
}
vector<shared_ptr<Blob<Dtype> > >& blobs() {
return blobs_;
}//返回vector blobs_
const LayerParameter& layer_param() const {
return layer_param_;
}//返回layer parameter
virtual void ToProto(LayerParameter* param, bool write_diff = false);
将layer plarameter 写入protobuf
inline Dtype loss(const int top_index) const {
return (loss_.size() > top_index) ? loss_[top_index] : Dtype(0);
}
inline void set_loss(const int top_index, const Dtype value) {
if (loss_.size() <= top_index) {
loss_.resize(top_index + 1, Dtype(0));
}
loss_[top_index] = value;
}
返回 ,设置一个blob top 在给定 index 的 loss
virtual inline const char* type() const { return ""; }//返回layer类型
virtual inline int ExactNumBottomBlobs() const { return -1; }//返回该layer 所需 bottom 的数量,如果没有要求返回-1
virtual inline int ExactNumTopBlobs() const { return -1; }//返回该layer 所需 top 的数量
inline bool param_propagate_down(const int param_id) {
return (param_propagate_down_.size() > param_id) ?
param_propagate_down_[param_id] : false;
}
inline void set_param_propagate_down(const int param_id, const bool value) {
if (param_propagate_down_.size() <= param_id) {
param_propagate_down_.resize(param_id + 1, true);
}
param_propagate_down_[param_id] = value;
}
设置对于那些bottom 需要反向传播。
virtual void CheckBlobCounts(const vector<Blob<Dtype>*>& bottom,
const vector<Blob<Dtype>*>& top) {
if (ExactNumBottomBlobs() >= 0) {
CHECK_EQ(ExactNumBottomBlobs(), bottom.size())
<< type() << " Layer takes " << ExactNumBottomBlobs()
<< " bottom blob(s) as input.";
}// 保证输入bottom 数量和要求的相同
if (MinBottomBlobs() >= 0) {
CHECK_LE(MinBottomBlobs(), bottom.size())
<< type() << " Layer takes at least " << MinBottomBlobs()
<< " bottom blob(s) as input.";
}//保证输入的bottom数量大于或等于要求的最小数量
if (MaxBottomBlobs() >= 0) {
CHECK_GE(MaxBottomBlobs(), bottom.size())
<< type() << " Layer takes at most " << MaxBottomBlobs()
<< " bottom blob(s) as input.";
}//保证输入的bottom数量小于或等于要求的最大数量
if (ExactNumTopBlobs() >= 0) {
CHECK_EQ(ExactNumTopBlobs(), top.size())
<< type() << " Layer produces " << ExactNumTopBlobs()
<< " top blob(s) as output.";
}// 保证输入top数量和要求的相同
if (MinTopBlobs() >= 0) {
CHECK_LE(MinTopBlobs(), top.size())
<< type() << " Layer produces at least " << MinTopBlobs()
<< " top blob(s) as output.";
}//保证输入的top数量大于或等于要求的最小数量
if (MaxTopBlobs() >= 0) {
CHECK_GE(MaxTopBlobs(), top.size())
<< type() << " Layer produces at most " << MaxTopBlobs()
<< " top blob(s) as output.";
}//保证输入的top数量小于或等于要求的最大数量
if (EqualNumBottomTopBlobs()) {
CHECK_EQ(bottom.size(), top.size())
<< type() << " Layer produces one top blob as output for each "
<< "bottom blob input.";
}//保证输入的bottom数量和输出的top数量相同
}
inline void SetLossWeights(const vector<Blob<Dtype>*>& top) {
const int num_loss_weights = layer_param_.loss_weight_size();
if (num_loss_weights) {
CHECK_EQ(top.size(), num_loss_weights) << "loss_weight must be "
"unspecified or specified once per top blob.";
for (int top_id = 0; top_id < top.size(); ++top_id) {
const Dtype loss_weight = layer_param_.loss_weight(top_id);
if (loss_weight == Dtype(0)) { continue; }//如果为0不对loss进行操作
this->set_loss(top_id, loss_weight);
const int count = top[top_id]->count();
Dtype* loss_multiplier = top[top_id]->mutable_cpu_diff();
caffe_set(count, loss_weight, loss_multiplier);//将loss_multiplier设为loss_weight
}
}
}