Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree.
According to the definition of LCA on Wikipedia: “The lowest common ancestor is defined between two nodes v and w as the lowest node in T that has both v and w as descendants (where we allow a node to be a descendant of itself).”
_______3______ / \ ___5__ ___1__ / \ / \ 6 _2 0 8 / \ 7 4
For example, the lowest common ancestor (LCA) of nodes 5
and 1
is 3
. Another example is LCA of nodes 5
and 4
is 5
, since a node can be a descendant of itself according to the LCA definition.
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if(root==NULL||p==NULL||q==NULL) return NULL; vector<TreeNode*> path1; getPath(root,p,path1); vector<TreeNode*> path2; getPath(root,q,path2); int size1 = path1.size(); int size2 = path2.size(); // 求最近祖先 TreeNode* node = NULL; for(int i = 0,j = 0;i <= size1 && j <= size2;++i,++j){ if((i == size1 || j == size2) || path1[i] != path2[j]){ node = path1[i-1]; break; }//if }//for return node; } bool getPath(TreeNode* root,TreeNode* node,vector<TreeNode*>& path) { path.push_back(root); if(root == node) { return true; }//if bool isExits = false; // 左子树 if(root->left) { isExits = getPath(root->left,node,path); }//if // 右子树 if(!isExits && root->right) { isExits = getPath(root->right,node,path); }//if if(!isExits) { path.pop_back(); }//if return isExits; } };