/*Max Sum Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 142622 Accepted Submission(s): 33185 Problem Description Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14. Input The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000). Output For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases. Sample Input 2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5 Sample Output Case 1: 14 1 4 Case 2: 7 1 6 Author Ignatius.L */
题意:求所给数列的最大连续和。
令初始sum为数列第一位,以大于0 的第一个数为起始, 每加上一个数判断sum与max的大小, 记录max以及当前sum的始末位置。
若sum加到某项为负数时,初始化sum为数列的下一项,初始化初位置,并继续求和,求最大的max
#include<stdio.h> int a[100010]; int main() { int i, j, k = 1, fir, la, n; scanf("%d", &n); while(n--) { scanf("%d", &a[0]); for(i = 1; i <= a[0]; i++) scanf("%d", &a[i]); int sum , max, x, y; max = a[1]; sum = a[1]; fir = x = 1; la = y = 1; for(i = 2; i <= a[0]; i++) { if( sum < 0) { sum = a[i]; x = i; y = i; } else { sum += a[i]; y = i; } if( sum > max ) { max = sum; fir = x; la = y; } } printf("Case %d:\n%d %d %d\n", k++, max, fir, la); if(n) printf("\n"); } return 0; }
//以下为常规的超时解法......
/* #include<stdio.h> int a[100000]; int main() { int T, i, j, fir, la, num = 1, k; scanf("%d", &T); while(T--) { int max = -1; scanf("%d", &a[0]); for( i = 1; i <= a[0] ; i++) scanf("%d", &a[i]); for( i = 1; i <= a[0]; i++)//start { for( j = i; j<= a[0]; j++)//end { int sum = 0; for(k = i; k <= j; k++)//max sum += a[k]; if( sum > max ) { max = sum; fir = i; la = j; } } } printf("Case %d:\n%d %d %d\n", num++, max, fir, la); if( T ) printf("\n"); } return 0; } */