Java虚拟机(三)编译子系统

编译分为三种:

  • .java文件转变成.class文件的过程——前端编译器(其实叫“编译器的前端”更准确一些)
  • 把字节码转变成机器码的过程——后端运行期编译器(JIT编译器,Just In Time Compiler)
  • 直接把*.java文件编译成本地机器代码的过程——静态提前编译器(AOT编译器,Ahead Of Time Compiler)

前端编译器:Sun的Javac、Eclipse JDT中的增量式编译器(ECJ)。
JIT编译器:HotSpot VM的C1、C2编译器。
AOT编译器:GNU Compiler for the Java(GCJ)、Excelsior JET。

在前端编译器中,“优化”手段主要用于提升程序的编码效率,之所以把Javac这类将Java代码转变为字节码的编译器称做“前端编译器”,是因为它只完成了从程序到抽象语法树或中间字节码的生成,而在此之后,还有一组内置于虚拟机内部的“后端编译器”完成了从字节码生成本地机器码的过程,即前面多次提到的即时编译器或JIT编译器,这个编译器的编译速度及编译结果的优劣,是衡量虚拟机性能一个很重要的指标。

早期(编译期)优化

javac编译器:
Java虚拟机(三)编译子系统_第1张图片

  • 解析与填充符号表
    1.词法、语法分析
    词法分析是将源代码的字符流转变为标记(Token)集合,语法分析是根据Token序列构造抽象语法树的过程,抽象语法树(Abstract Syntax Tree,AST)是一种用来描述程序代码语法结构的树形表示方式,语法树的每一个节点都代表着程序代码中的一个语法结构(Construct),例如包、类型、修饰符、运算符、接口、返回值甚至代码注释等都可以是一个语法结构。
    2.填充符号表
    符号表(Symbol Table)是由一组符号地址和符号信息构成的表格,读者可以把它想象成哈希表中K-V值对的形式(实际上符号表不一定是哈希表实现,可以是有序符号表、树状符号表、栈结构符号表等)。符号表中所登记的信息在编译的不同阶段都要用到。
  • 注解处理器
    提供了一组插入式注解处理器的标准API在编译期间对注解进行处理,我们可以把它看做是一组编译器的插件,在这些插件里面,可以读取、修改、添加抽象语法树中的任意元素。如果这些插件在处理注解期间对语法树进行了修改,编译器将回到解析及填充符号表的过程重新处理,直到所有插入式注解处理器都没有再对语法树进行修改为止,每一次循环称为一个Round,也就是图10-4中的回环过程。
  • 语义分析与字节码生成
    语法分析之后,编译器获得了程序代码的抽象语法树表示,语法树能表示一个结构正确的源程序的抽象,但无法保证源程序是符合逻辑的。而语义分析的主要任务是对结构上正确的源程序进行上下文有关性质的审查,如进行类型审查。语义分析过程分为1.标注检查以及2.数据及控制流分析两个步骤。
    3.接着解语法糖。
    4.字节码生成

晚期(运行期)优化

当虚拟机发现某个方法或代码块的运行特别频繁时,就会把这些代码认定为“热点代码”(Hot Spot Code)。为了提高热点代码的执行效率,在运行时,虚拟机将会把这些代码编译成与本地平台相关的机器码,并进行各种层次的优化,完成这个任务的编译器称为即时编译器(Just In Time Compiler,下文中简称JIT编译器)。

HotSpot虚拟机内的即时编译器

为何HotSpot虚拟机要使用解释器与编译器并存的架构?
为何HotSpot虚拟机要实现两个不同的即时编译器?
程序何时使用解释器执行?何时使用编译器执行?
哪些程序代码会被编译为本地代码?如何编译为本地代码?
如何从外部观察即时编译器的编译过程和编译结果?

解释器与编译器:
当程序需要迅速启动和执行的时候,解释器可以首先发挥作用,省去编译的时间,立即执行。在程序运行后,随着时间的推移,编译器逐渐发挥作用,把越来越多的代码编译成本地代码之后,可以获取更高的执行效率。当程序运行环境中内存资源限制较大(如部分嵌入式系统中),可以使用解释执行节约内存,反之可以使用编译执行来提升效率。

HotSpot虚拟机中内置了两个即时编译器,分别称为Client Compiler和Server Compiler,或者简称为C1编译器和C2编译器(也叫Opto编译器)。用Client Compiler获取更高的编译速度,用Server Compiler来获取更好的编译质量

热点代码:

  • 被多次调用的方法(栈上替换)
  • 被多次执行的循环体

热点探测:

  • 基于采样的热点探测
  • 基于计数器的热点探测
    • 方法调用计数器(Invocation Counter)
    • 回边计数器(Back Edge Counter)

编译优化技术

(待完善)

Java与C/C++编译器对比

Java虚拟机的即时编译器与C/C++的静态优化编译器相比,可能会由于下列这些原因而导致输出的本地代码有一些劣势(下面列举的也包括一些虚拟机执行子系统的性能劣势):
第一,因为即时编译器运行占用的是用户程序的运行时间,具有很大的时间压力,它能提供的优化手段也严重受制于编译成本。如果编译速度不能达到要求,那用户将在启动程序或程序的某部分察觉到重大延迟,这点使得即时编译器不敢随便引入大规模的优化技术,而编译的时间成本在静态优化编译器中并不是主要的关注点。
第二,Java语言是动态的类型安全语言,这就意味着需要由虚拟机来确保程序不会违反语言语义或访问非结构化内存。从实现层面上看,这就意味着虚拟机必须频繁地进行动态检查,如实例方法访问时检查空指针、数组元素访问时检查上下界范围、类型转换时检查继承关系等。对于这类程序代码没有明确写出的检查行为,尽管编译器会努力进行优化,但是总体上仍然要消耗不少的运行时间。
第三,Java语言中虽然没有virtual关键字,但是使用虚方法的频率却远远大于C/C++语言,这意味着运行时对方法接收者进行多态选择的频率要远远大于C/C++语言,也意味着即时编译器在进行一些优化(如前面提到的方法内联)时的难度要远大于C/C++的静态优化编译器。
第四,Java语言是可以动态扩展的语言,运行时加载新的类可能改变程序类型的继承关系,这使得很多全局的优化都难以进行,因为编译器无法看见程序的全貌,许多全局的优化措施都只能以激进优化的方式来完成,编译器不得不时刻注意并随着类型的变化而在运行时撤销或重新进行一些优化。
第五,Java语言中对象的内存分配都是堆上进行的,只有方法中的局部变量才能在栈上分配。而C/C++的对象则有多种内存分配方式,既可能在堆上分配,又可能在栈上分配,如果可以在栈上分配线程私有的对象,将减轻内存回收的压力。另外,C/C++中主要由用户程序代码来回收分配的内存,这就不存在无用对象筛选的过程,因此效率上(仅指运行效率,排除了开发效率)也比垃圾收集机制要高。
上面说了一大堆Java语言相对C/C++的劣势,不是说Java就真的不如C/C++了,相信读者也注意到了,Java语言的这些性能上的劣势都是为了换取开发效率上的优势而付出的代价,动态安全、动态扩展、垃圾回收这些“拖后腿”的特性都为Java语言的开发效率做出了很大贡献。

你可能感兴趣的:(java,虚拟机)