HDOJ2829-斜率优化

/*
终于做斜率优化做得有些感觉了~
和HDOJ3480很相似~我的这两份代码除了公式处理部分不同,其它部分都差不多~
(1)dp方程:dp[c][i]=min{dp[c-1][j]+w(j+1,i)},其中w(i,j)为段j+1~i的Strategic Value;
(2)斜率不等式:
    起初我用二位统计数组计算w(i,j),弄了很久i和j根本无法分离,只好另辟它径;
    记s[i]=a[1]+a[2]+...+a[i]; sq[i]=a[1]^2+a[2]^2+...+a[i]^2;
    有w(j,i)=[(s[i]-s[j-1])^2-(sq[i]-sq[j-1])]/2;
    然后解dp[k][*]+w(k+1,i)<=dp[j][*]+w(j+1,i)得斜率不等式:
    记y(j)=dp[j]+(s[j]^2+sq[j])/2;
        x(j)=s[j];
    有(y(k)-y(j))/(x(k)-x(j))<=s[i];
    然后就是直接套着写了~
*/
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;

typedef __int64 LL;
const int NN=1005;

int n,m,flag,r,f,a[NN],q[NN];
LL s[NN],sq[NN],dp[2][NN];

inline LL x(int j)//中间算错过一次,写成了s[j-1],囧...
{
    return s[j];
}

inline LL y(int j)//中间算错过一次,写成了s[j-1],囧...
{
    return dp[flag^1][j]+(s[j]*s[j]+sq[j])/2;
}

inline LL w(int j,int i)
{
    return ((s[i]-s[j-1])*(s[i]-s[j-1])+sq[j-1]-sq[i])/2;
}

inline LL g(int j,int i)
{
    return dp[flag^1][j]+w(j+1,i);
}

inline int mult(int p1,int p2,int p0)
{
    return (x(p1)-x(p0))*(y(p2)-y(p0))-(x(p2)-x(p0))*(y(p1)-y(p0));
}

int main()
{
    while (scanf("%d%d",&n,&m),n|m)
    {
        m++;
        for (int i=1; i<=n; i++) scanf("%d",&a[i]);
        if (m==n) { printf("0\n"); continue; }
        s[0]=0; sq[0]=0;
        for (int i=1; i<=n; i++)
        {
            s[i]=s[i-1]+a[i];
            sq[i]=sq[i-1]+a[i]*a[i];
        }

        //dp
        for (int i=1; i<=n; i++) dp[1][i]=w(1,i);
        for (int j=2; j<=m; j++)
        {
            flag=j%2;
            f=0,r=0;
            q[r++]=j-1;
            for (int i=j; i<=n; i++)
            {
                while (f<r-1 && g(q[f],i)>=g(q[f+1],i)) f++;
                dp[flag][i]=g(q[f],i);
                while (f<r-1 && mult(q[r-2], q[r-1],i)<=0) r--;
                q[r++]=i;
            }
        }
        printf("%I64d\n",dp[flag][n]);
    }
    return 0;
}

你可能感兴趣的:(c,优化)