Visual Categorization with Bags of Keypoints

1.Introduction and backgrounds

作为本周的论文之一,这是一篇bag of features的基本文章之一,主要了解其中的基本思路,以及用到的基本技术,尽量使得细节更加清楚。

文章中比较了两个基本的方法,分别是:BAYES和SVM。

bag of keypoints的基本原理是:

A bag of keypoints corresponds to a histogram of the number of occurrences of particular image patterns in a given image.


2. The main step

The main steps of our method are:
• Detection and description of image patches 虽然patches 是小块的意思,但是这similar to the meaning of patten
• Assigning patch descriptors to a set of predetermined clusters (a vocabulary) 第二部是对某一类的cluster 分配一个vocabulary
with a vector quantization algorithm 用一个矢量量化算法
• Constructing a bag of keypoints, which counts the number of patches assigned to each cluster实际转化为了计算hiastogram的分配问题,只是计算patten的histogram
• Applying a multi-class classifier, treating the bag of keypoints as the feature vector, and thus determine which category or categories to assign to the image.采用一个多分类的分类器对histogram进行 classify,最后得到每种分类


3.Therefore the steps involved in training the system allow consideration of multiple possible vocabularies:
• Detection and description of image patches for a set of labeled training
images
• Constructing a set of vocabularies: each is a set of cluster centres, with re-
spect to which descriptors are vector quantized.
• Extracting bags of keypoints for these vocabularies 提取这些词汇的keypoints,这些keypoints的定义是如何呢?(We refer to the quantized feature vectors (cluster centres) as “keypoints” by analogy with “keywords” in text categorization.)所以实际上应该指的histogram
• Training multi-class classifiers using the bags of keypoints as feature vectors 训练分类器,本文所采用两种分类器,分别所bayes分类器和SVM分类器

4.Feature extraction

就是特征的选取,作者一系列原因说明后,认为sift最好;

5. Visual vocabulary construction

总体目标:the vocabulary is a way of constructing a feature vector for classification that relates “new” descriptors in query images to descriptors previously seen in
training 实际就是建立相应的descriptor

经过一系列的说明,作者选择了比较常用的k-means算法作为vocabulaory building 的算法

但是k-means会带来两个问题:一、k-means仅仅对局部的最优化比较好;二、k-means的参数k是无法自己设定的,需要人工设定(作者解决方案是 多做几组,然后采用错误率最低的)

6.Categorization

(1) 贝叶斯分类

considering visual categorization, assume we have a set of labeled images I = Ii and a vocabulary V = vi of representative keypoints (i.e. cluster centers). Each
descriptor extracted from an image is labeled with the keypoint to which it lies closest in feature space. We count the number N(t,i) of times keypoint vi occurs in image Ii .

构造相应的分类特征,每个descriptor都被一个keypoint(空间内最近)所描述,然后计算每个keypoint在image I 中出现的概率,类似于计算histogram

P (C j | I i ) α P (C j )P (I i | C j )
将条件概率的计算,转化为反方向的计算,也就是计算其在训练时得到的已知类别情况下的vocabulary出现概率,一旦出现新的输入image,那么就可以直接就算其每个类别的出现概率

(2) SVM 分类

SVM实际就是边界最大化的分类方法

In order to apply the SVM to multi-class problems we take the one-against-all approach. Given an m-class problem, we train m SVM’s, each distinguishes images from
some category i from images from all the other m-1 categories j not equal to i. Given a query image, we assign it to the class with the largest SVM output。

所采用的并不是所谓的多标签学习,还是一种二分的方法,先把一种类别同其他类别进行区分,然后再不断二分,如此继续。


7.实验结果

In the first we explore the impact of the number of clusters on classifier accuracy and evaluate the performance of the Naïve Bayes classifier. We then explore the performance of the SVM on the same problem.

(1)贝叶斯方法 k=1000时效果比较好

(2)SVM中linear method gave the best performance (except in the case of cars where a quadratic SVM gave better results)

SVM方法明显比贝叶斯方法好很多

你可能感兴趣的:(image,vector,performance,Descriptor,Training,classification)