- 数学建模—SPSS学习笔记
shellier
数学建模—SPSS学习笔记学习笔记数学建模
1、描述统计(描述一组数据的集中和离散情况)SPSS操作分析—描述统计—描述度量标准:度量(定距变量IntervalData)【可以分类(=和≠),可以排序(>和和30),其样本均值都近似服从正态分布。条件二:样本数据是连续的且数据之间的差异不能太大(不能包含离群点或异常值)。条件三:每组样本之间相互独立。条件四:皮尔逊相关系数有效的前提是两组数据(两个对象)之间呈线性关系。2)散点图检验使用EX
- python金融数据分析与挖掘实战 黄恒秋_金融数据分析与挖掘——股票时间序列数据处理...
weixin_39849930
黄恒秋
1、什么是时间序列分析时间序列分析(timeseriesanalysis)方法,强调的是通过对一个区域进行一定时间段内的连续观察计算,提取相关特征,并分析其变化过程。时间序列分析主要有确定性变化分析和随机性变化分析确定性变化分析:移动平均法,移动方差和标准差、移动相关系数随机性变化分析:AR、ARMA模型2、移动平均法2.1移动窗口主要用在时间序列的数组变换,不同作用的函数将它们统称为移动窗口函数
- Python相关系数导图
亚图跨际
交叉知识Python神经网络量化特征关联汽车性价比矩阵热图流行病和资产价格城镇化交通量非线性捕捉量化图像相似性神经模型
要点量化变量和特征关联绘图对比皮尔逊相关系数、斯皮尔曼氏秩和肯德尔秩汽车性价比相关性矩阵热图大流行病与资产波动城镇化模型预测交通量宝可梦类别特征非线性依赖性捕捉向量加权皮尔逊相关系数量化图像相似性Python皮尔逊-斯皮尔曼-肯德尔皮尔逊相关系数在统计学中,皮尔逊相关系数是一种用于测量两组数据之间线性相关性的相关系数。它是两个变量的协方差与其标准差乘积的比率;因此,它本质上是协方差的标准化测量,其
- 每天一个数据分析题(四百九十)- 主成分分析与因子分析
跟着紫枫学姐学CDA
数据分析题库数据分析数据挖掘
在主成分分析中,主成分的选择通常是按照()的大小排序来进行的。A.特征值B.特征向量C.协方差矩阵D.相关系数矩阵数据分析认证考试介绍:点击进入题目来源于CDA模拟题库点击此处获取答案数据分析专项练习题库内容涵盖Python,SQL,统计学,数据分析理论,深度学习,可视化,机器学习,Spark八个方向的专项练习题库,数据分析从业者刷题必备神器!
- 协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系
迷路爸爸180
python机器学习
协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系文章目录协方差详解及在日常生活中的应用实例——天气温度与冰淇淋销量的关系引言协方差的概念与背景数学公式推导实例背景数据收集计算过程结果解释计算相关系数为什么使用协方差?结论商业启示引言在日常生活中,我们经常会遇到需要分析两个变量之间关系的情况。其中一个重要的统计量就是协方差,它可以帮助我们理解两个变量之间的线性关系方向和强度。本文将通
- [回归指标]R2、PCC(Pearson’s r )
DJ.马
#评价指标参数和模型参数回归数据挖掘人工智能
R2相关系数R2相关系数很熟悉了,就不具体解释了。皮尔逊相关系数(PCC)皮尔逊相关系数是研究变量之间线性相关程度的量,R方和PCC是不同的指标。R方衡量x和y的接近程度,PCC衡量的是x和y的变化趋势是否相同。R方是不对称关系,PCC是对称关系。皮尔逊相关系数小结Pearson’sr只适用于线性数据。看下面的图。它们清楚地展示了一种看似非随机的关系,但是Pearson’sr非常接近于零。原因是因
- 面向面试的机器学习知识点(2)——数理统计
小井正在努力中
机器学习人工智能
本期省流版:成为数据分析师,这些数理统计知识必不可少!大样本,小样本的概念协方差、相关系数、独立性之间的区别与联系显著性水平/置信度/置信区间假设检验三种经典分布,和对应的三种检验方式方差分析中心极限定理,大数定理内容很多,创作不易,请多多支持~大样本/小样本大样本:样本量趋于无穷小样本:样本量有限协方差/相关系数/独立性协方差定义:两个变量总体的误差,反映两个变量之间的变化趋势(eg.一个上升,
- Python编程读取csv文件数据分别计算RMSE、SD、R
是筱倩阿
pythonpythonnumpy
使用Pandas和NumPy库,从CSV文件中读取数据,并对列名进行了更新。使用循环计算了三组数据的RMSE、标准差和相关系数,并将结果打印输出。其中,RMSE(RootMeanSquaredError)是衡量预测值和真实值之间误差的一种方法;SD(StandardDeviation)是预测值和真实值之间误差的标准差;R(CorrelationCoefficient)是衡量预测值和真实值之间线性关
- R语言:改造corrgram包画复合型相关性热图
蟒茶
R小系列r语言
corrgram用来画相关性热图很不错,因为此包可以使上下半个三角用于显示不同的图和信息,从而让热图信息比较充实。此函数内置了很多参数,比如可以通过lowe.pancel或者upper.panel的自带方法在上下半区显示:颜色热图,相关性系数,散点图,bar图等等。corrgram(data,diag=panel.density,lower.panel=panel.fill,#相关系数显示颜色up
- 利用R中的corrmorant包绘制精美的相关性热图
带我去滑雪
机器学习之Rr语言开发语言
大家好,我是带我去滑雪!相关性热图(correlationheatmap)是一种可视化工具,用于展示数据集中各个变量之间的相关性。它以矩阵的形式显示变量之间的相关系数,并通过色彩编码来表示相关性的强度。在相关性热图中,每个变量都对应图中的一行和一列。图中的每个单元格代表两个变量之间的相关性,通常使用颜色来表示相关性的强度。通常,相关性的计算采用的是Pearson相关系数,它度量线性关系的强度和方向
- R实用绘图--相关性热图
数据之帆
R语言r语言笔记经验分享
R实用绘图系列主要是带领大家绘制一些实用、好看而又不太复杂的科研常用图形,该系列会持续更新,希望对小伙伴们有所帮助。那我们就正式开始啦。所需数据格式准备好相关系数和显著性两个数据文件,数据展示如下。相关系数矩阵显著水平矩阵数据处理#加载包library(corrplot)#读取相关系数矩阵corr<-read.csv('./corr.csv',row.names=1)#读取显著水平矩阵pvalue
- pearson correlation coefficient
dingtom
要理解Pearson相关系数,首先要理解协方差(Covariance),协方差是一个反映两个随机变量相关程度的指标,如果一个变量跟随着另一个变量同时变大或者变小,那么这两个变量的协方差就是正值,反之相反,公式如下:Pearson相关系数公式如下:由公式可知,Pearson相关系数是用协方差除以两个变量的标准差得到的,虽然协方差能反映两个随机变量的相关程度(协方差大于0的时候表示两者正相关,小于0的
- 概率论自复习思路
Miracle Fan
概率论
概率论复习思路(存在纰漏)文章目录概率论复习思路(存在纰漏)基本概念随机变量分布多维随机变量分布离散型连续性数字特征数学期望方差协方差系数矩、协方差矩阵大数定律抽样分布、估计、假设检验参数估计区间估计假设检验基本概念样本空间,和事件、差事件两个事件的关系:相不相容、是不是对立、两者之间的关系(ρ\rhoρ相关系数只反映线性方面,还可能存在非线性关系)事件发生的概率和发生关系:比如概率为0不一定代表
- 数据分析 — Numpy 数组处理
永远十八的小仙女~
数据分析数据分析numpy
目录一、简介1、概念2、优点3、特点4、作用5、引用二、创建数组1、创建一维数组3、创建二维数组三、属性和数组运算1、基本属性2、数据类型3、数组运算四、索引和切片1、基本索引2、多维数组索引3、基本切片4、多维数组切片5、布尔索引6、花式索引7、修改元素值五、统计函数1、均值2、中位数3、总和4、乘积5、最小值6、最大值7、标准差8、方差9、协方差10、百分位数11、直方图12、相关系数六、按条
- 用Excel进行数据分析:数据分析工具在哪里?
东方草堂的数据
【工具】Excel
用Excel进行数据分析:数据分析工具在哪里?Excel里面自带的数据分析功能也可以完成SAS、SPSS这些专业统计软件有的数据分析工作,这其中包括:描述性统计、相关系数、概率分布、均值推断、线性、非线性回归、多元回归分析、时间序列等内容。接下来的用Excel进行数据分析系列教程,都是基于Excel2013,今天我们讲讲Excel2013的数据分析工具在哪里?分析工具库是在安装MicrosoftO
- 相关系数绝对值小于等于1的证明(扩展2)
工业机器视觉设计和实现
机器视觉算法
再归纳:p=E(a-Ea)(b-Eb)/(sqrt(E(a-Ea)(a-Ea))*sqrt(E(b-Eb)(b-Eb)))当(b-Eb)是常量c时,上式子退化为E(a-Ea)/sqrt(E(a-Ea)(a-Ea))分子分母平方,(E(a-Ea)*E(a-Ea))/(E(a-Ea)(a-Ea)).令x=a-Ea,则x的方差,Dx=E(x-Ex)*(x-Ex)=E(x)(x)-(Ex)*(Ex)由方差
- ncc匹配(五,匹配提速的思考)
工业机器视觉设计和实现
机器视觉
感觉ncc(相关系数匹配)与bpnet(bp神经网络)相似,但ncc简洁方便快速,计算量小,问题点也少。都有归一化的动作,都是相关性的学习,不过bpnet可以学习多种类型,ncc好像不行。卷积神经网络(cnn),我觉得跑不出ncc,bpnet,以及基于轮廓匹配的范畴。cnn的概念都在以上三种匹配的概念中,没有什么新的东西了。扯远了,回到ncc的提速上来:前面有ncc提速和旋转的思考,这里是另外的方
- 【机器学习笔记】回归算法
住在天上的云
机器学习笔记回归线性回归人工智能
回归算法文章目录回归算法1线性回归2损失函数3多元线性回归4线性回归的相关系数1线性回归回归分析(Regression)回归分析是描述变量间关系的一种统计分析方法例:在线教育场景因变量Y:在线学习课程满意度自变量X:平台交互性、教学资源、课程设计预测性的建模技术,通常用于预测分析,预测的结果多为连续值(也可为离散值,二值)线性回归(Linearregression)因变量和自变量之间是线性关系,就
- SPSS双变量相关分析
数据科学作家
SPSSSPSS学习SPSS入门统计分析相关分析数据分析统计学
双变量相关分析通过计算皮尔逊简单相关系数、斯皮尔曼等级相关系数、肯德尔等级相关系数及其显著性水平展开。其中皮尔逊简单相关系数是一种线性关联度量,适用于变量为定量连续变量且服从正态分布、相关关系为线性时的情形。如果变量不是正态分布的,或具有已排序的类别,相互之间的相关关系不是线性的,则更适合采用斯皮尔曼等级相关系数和肯德尔等级相关系数。本小节用于分析的数据是《中国2020年1~12月货币供应量统计》
- 数据分析案例 - 人力资源数据
Terry_trans
数据分析/机器学习项目数据可视化数据分析数据挖掘
目录1.了解该数据集的基本信息2.对变量进行描述性统计3.数据清洗4.计算数值型变量的相关系数5.使用交叉表(crosstab)统计不同部门员工的学历构成6.使用数据透视表(pivot_table)统计不同部门、不同性别员工的流失率:7.绘制反映不同性别员工占比的饼图(piechart)8.绘制不同部门员工人数的柱状图(barchart)9.绘制不同性别员工薪酬的箱型图(boxplot)10.绘制
- python毕设选题 - 基于时间序列的股票预测于分析
DanCheng-studio
毕业设计python毕设
文章目录1简介2时间序列的由来2.1四种模型的名称:3数据预览4理论公式4.1协方差4.2相关系数4.3scikit-learn计算相关性5金融数据的时序分析5.1数据概况5.2序列变化情况计算最后1简介Hi,大家好,今天向大家介绍一个大数据项目大数据分析:基于时间序列的股票预测于分析2时间序列的由来提到时间序列分析技术,就不得不说到其中的AR/MA/ARMA/ARIMA分析模型。这四种分析方法的
- 内积为什么能表达向量之间的相关(似)性
蒲公英smile
机器学习
引子在使用向量内积代表相关性时,有一个前提:向量归一化到单位向量,本质是余弦距离。论证粗糙地想一下概率空间上的例子:协方差的本质是内积。标准差的本质是模长。相关系数的本质是夹角余弦。你感受一下内积是不是能描述相关性
- 数学建模:数据相关性分析(Pearson和 Spearman相关系数)含python实现
图学习的小张
数学建模python开发语言
相关性分析是一种用于衡量两个或多个变量之间关系密切程度的方法。相关性分析通常用于探索变量之间的关系,以及预测一个变量如何随着另一个变量的变化而变化。在数学建模中,这是常用的数据分析手段。 相关性分析的结果通常用相关系数来表示,相关系数的取值范围为-1到1,其中1表示完全正相关,-1表示完全负相关,0表示没有相关性。我们常用的相关系数包括:Pearson相关系数:用于衡量两个连续变量之间的线性
- 相关系数绝对值小于等于1的证明(扩展)
工业机器视觉设计和实现
算法
ncc匹配(四,相关系数绝对值小于等于1的证明)中提及(1+2+3+……+n)^21时,结论成立。参考,ncc匹配(四,相关系数绝对值小于等于1的证明)可以推出:(xy+x1y1+...+xnyn)/(sqrt(x^2+x1^2+...+xn^2)*sqrt(y^2+y1^2+...+yn^2))<=1这个公式就是图像处理中相关系数公式p=E(ab)/sqrt(Ea^2*Eb^2)的展开。所以就能
- ncc匹配(四,相关系数绝对值小于等于1的证明)
工业机器视觉设计和实现
机器视觉算法
相关系数公式p=E(ab)/sqrt(Ea^2*Eb^2),|p|<=1这个公式用样本(我们搞机器视觉图像处理的,就用图像)展开:a和b变量都只有一项,则相关系数公式=E(ab)/sqrt(Ea^2Eb^2)=xy/sqrt(x^2*Y^2)=1a和b变量都只有二项,则相关系数公式=E(ab)/sqrt(Ea^2Eb^2)=(xy+x1y1)/(sqrt(x^2+x1^2)*sqrt(y^2+y1
- 解析机器学习中的几种常见聚类算法
魔法_wanda
first机器学习算法人工智能算法
关于聚类算法一直是近几年来机器学习的热门,下面谈谈自己对其中几种聚类算法的理解,首先在谈聚类算法之前我们引入相似度这么一个概念,什么是相似度呢,简单来说假设有M个样本,其中任意两个样本之间的相似的度量,很明显我们需要一个标准去度量它们下面有几种常见的度量标准:1.欧式距离2.杰卡尔德距离3.相关系数1K-Means算法还有一些度量标准在这里就不多做介绍了,接下来我们介绍第一种聚类算法,K-Mean
- Python | 常用的命令
写代码的阿呆
PythonPython绘图忽略错误信息分区绘图不显示科学计数法
Python有哪些常用但容易忘记的命令?1如何忽略报错信息2Python常见绘图系列代码2.1绘制对比箱线图2.2分区绘制图形2.3绘制相关系数图(热图)2.4绘制计数的条形图countplot2.5直方图和核密度图的合体distplot3绘图函数封装3.11×2的直方图封装3.21×2的对比箱线图封装3.31×2的【1+对数】对比箱线图封装3.4统计量计算的函数封装4如何取消科学计数法5删去几倍
- 最简数据挖掘|房租价格预测
Python风控模型与数据分析
数据分析机器学习数据挖掘数据挖掘人工智能
目录一、数据介绍二、数据统计分析1、数据基本统计2、数据缺失统计3、特征分布统计4、相关系数矩阵三、回归模型划重点少走10年弯路一、数据介绍数据源自最简数据挖掘系列,内容包括位置、出租方式、卧室/客厅/卫生间数量、楼层、面积、装修情况、户型朝向、小区房源情况等等信息,其中包括位置、区、小区名、Label等在内的多个字段都已经过编码/脱敏处理。数据获取见文末二、数据统计分析1、数据基本统计查看整体分
- 第6章 多元线性回归
流焱之舞
一、遗漏变量偏差遗漏变量偏差是指OLS估计量中存在的偏差,它是在回归变量与遗漏变量相关时产生的。遗漏变量偏差意味着第一个最小二乘假设不成立。其理由如下:由前知一元线性回归模型中的误差项表示除了之外所有决定的因素。若其中某个因素与相关,则意味着误差项与相关。令和的相关系数为,第一个假设不成立而第二个和第三个假设成立,则OLS估计量具有如下极限:(1)无论样本容量是大还是小,遗漏变量偏差问题都存在。(
- 深度学习入门笔记(六)线性回归模型
zhanghui_cuc
深度学习笔记深度学习笔记线性回归
本节,我们用线性回归为例子,回顾一些基本概念6.1相关性相关性的取值范围是-1到1,越接近1或者-1代表越相关,越接近0则越不相关。相关系数大于0称为正相关,小于0称为负相关。假如A与B正相关,则是说A(B)会随着B(A)的增大而增大,减小而减小。假如A与B负相关,则是说A(B)会随着B(A)的增大而减小,减小而增大。皮尔逊系数就是常用的相关性方法。6.2什么是线性回归顾名思义,就是用一种线性关系
- java解析APK
3213213333332132
javaapklinux解析APK
解析apk有两种方法
1、结合安卓提供apktool工具,用java执行cmd解析命令获取apk信息
2、利用相关jar包里的集成方法解析apk
这里只给出第二种方法,因为第一种方法在linux服务器下会出现不在控制范围之内的结果。
public class ApkUtil
{
/**
* 日志对象
*/
private static Logger
- nginx自定义ip访问N种方法
ronin47
nginx 禁止ip访问
因业务需要,禁止一部分内网访问接口, 由于前端架了F5,直接用deny或allow是不行的,这是因为直接获取的前端F5的地址。
所以开始思考有哪些主案可以实现这样的需求,目前可实施的是三种:
一:把ip段放在redis里,写一段lua
二:利用geo传递变量,写一段
- mysql timestamp类型字段的CURRENT_TIMESTAMP与ON UPDATE CURRENT_TIMESTAMP属性
dcj3sjt126com
mysql
timestamp有两个属性,分别是CURRENT_TIMESTAMP 和ON UPDATE CURRENT_TIMESTAMP两种,使用情况分别如下:
1.
CURRENT_TIMESTAMP
当要向数据库执行insert操作时,如果有个timestamp字段属性设为
CURRENT_TIMESTAMP,则无论这
- struts2+spring+hibernate分页显示
171815164
Hibernate
分页显示一直是web开发中一大烦琐的难题,传统的网页设计只在一个JSP或者ASP页面中书写所有关于数据库操作的代码,那样做分页可能简单一点,但当把网站分层开发后,分页就比较困难了,下面是我做Spring+Hibernate+Struts2项目时设计的分页代码,与大家分享交流。
1、DAO层接口的设计,在MemberDao接口中定义了如下两个方法:
public in
- 构建自己的Wrapper应用
g21121
rap
我们已经了解Wrapper的目录结构,下面可是正式利用Wrapper来包装我们自己的应用,这里假设Wrapper的安装目录为:/usr/local/wrapper。
首先,创建项目应用
&nb
- [简单]工作记录_多线程相关
53873039oycg
多线程
最近遇到多线程的问题,原来使用异步请求多个接口(n*3次请求) 方案一 使用多线程一次返回数据,最开始是使用5个线程,一个线程顺序请求3个接口,超时终止返回 缺点 测试发现必须3个接
- 调试jdk中的源码,查看jdk局部变量
程序员是怎么炼成的
jdk 源码
转自:http://www.douban.com/note/211369821/
学习jdk源码时使用--
学习java最好的办法就是看jdk源代码,面对浩瀚的jdk(光源码就有40M多,比一个大型网站的源码都多)从何入手呢,要是能单步调试跟进到jdk源码里并且能查看其中的局部变量最好了。
可惜的是sun提供的jdk并不能查看运行中的局部变量
- Oracle RAC Failover 详解
aijuans
oracle
Oracle RAC 同时具备HA(High Availiablity) 和LB(LoadBalance). 而其高可用性的基础就是Failover(故障转移). 它指集群中任何一个节点的故障都不会影响用户的使用,连接到故障节点的用户会被自动转移到健康节点,从用户感受而言, 是感觉不到这种切换。
Oracle 10g RAC 的Failover 可以分为3种:
1. Client-Si
- form表单提交数据编码方式及tomcat的接受编码方式
antonyup_2006
JavaScripttomcat浏览器互联网servlet
原帖地址:http://www.iteye.com/topic/266705
form有2中方法把数据提交给服务器,get和post,分别说下吧。
(一)get提交
1.首先说下客户端(浏览器)的form表单用get方法是如何将数据编码后提交给服务器端的吧。
对于get方法来说,都是把数据串联在请求的url后面作为参数,如:http://localhost:
- JS初学者必知的基础
百合不是茶
js函数js入门基础
JavaScript是网页的交互语言,实现网页的各种效果,
JavaScript 是世界上最流行的脚本语言。
JavaScript 是属于 web 的语言,它适用于 PC、笔记本电脑、平板电脑和移动电话。
JavaScript 被设计为向 HTML 页面增加交互性。
许多 HTML 开发者都不是程序员,但是 JavaScript 却拥有非常简单的语法。几乎每个人都有能力将小的
- iBatis的分页分析与详解
bijian1013
javaibatis
分页是操作数据库型系统常遇到的问题。分页实现方法很多,但效率的差异就很大了。iBatis是通过什么方式来实现这个分页的了。查看它的实现部分,发现返回的PaginatedList实际上是个接口,实现这个接口的是PaginatedDataList类的对象,查看PaginatedDataList类发现,每次翻页的时候最
- 精通Oracle10编程SQL(15)使用对象类型
bijian1013
oracle数据库plsql
/*
*使用对象类型
*/
--建立和使用简单对象类型
--对象类型包括对象类型规范和对象类型体两部分。
--建立和使用不包含任何方法的对象类型
CREATE OR REPLACE TYPE person_typ1 as OBJECT(
name varchar2(10),gender varchar2(4),birthdate date
);
drop type p
- 【Linux命令二】文本处理命令awk
bit1129
linux命令
awk是Linux用来进行文本处理的命令,在日常工作中,广泛应用于日志分析。awk是一门解释型编程语言,包含变量,数组,循环控制结构,条件控制结构等。它的语法采用类C语言的语法。
awk命令用来做什么?
1.awk适用于具有一定结构的文本行,对其中的列进行提取信息
2.awk可以把当前正在处理的文本行提交给Linux的其它命令处理,然后把直接结构返回给awk
3.awk实际工
- JAVA(ssh2框架)+Flex实现权限控制方案分析
白糖_
java
目前项目使用的是Struts2+Hibernate+Spring的架构模式,目前已经有一套针对SSH2的权限系统,运行良好。但是项目有了新需求:在目前系统的基础上使用Flex逐步取代JSP,在取代JSP过程中可能存在Flex与JSP并存的情况,所以权限系统需要进行修改。
【SSH2权限系统的实现机制】
权限控制分为页面和后台两块:不同类型用户的帐号分配的访问权限是不同的,用户使
- angular.forEach
boyitech
AngularJSAngularJS APIangular.forEach
angular.forEach 描述: 循环对obj对象的每个元素调用iterator, obj对象可以是一个Object或一个Array. Iterator函数调用方法: iterator(value, key, obj), 其中obj是被迭代对象,key是obj的property key或者是数组的index,value就是相应的值啦. (此函数不能够迭代继承的属性.)
- java-谷歌面试题-给定一个排序数组,如何构造一个二叉排序树
bylijinnan
二叉排序树
import java.util.LinkedList;
public class CreateBSTfromSortedArray {
/**
* 题目:给定一个排序数组,如何构造一个二叉排序树
* 递归
*/
public static void main(String[] args) {
int[] data = { 1, 2, 3, 4,
- action执行2次
Chen.H
JavaScriptjspXHTMLcssWebwork
xwork 写道 <action name="userTypeAction"
class="com.ekangcount.website.system.view.action.UserTypeAction">
<result name="ssss" type="dispatcher">
- [时空与能量]逆转时空需要消耗大量能源
comsci
能源
无论如何,人类始终都想摆脱时间和空间的限制....但是受到质量与能量关系的限制,我们人类在目前和今后很长一段时间内,都无法获得大量廉价的能源来进行时空跨越.....
在进行时空穿梭的实验中,消耗超大规模的能源是必然
- oracle的正则表达式(regular expression)详细介绍
daizj
oracle正则表达式
正则表达式是很多编程语言中都有的。可惜oracle8i、oracle9i中一直迟迟不肯加入,好在oracle10g中终于增加了期盼已久的正则表达式功能。你可以在oracle10g中使用正则表达式肆意地匹配你想匹配的任何字符串了。
正则表达式中常用到的元数据(metacharacter)如下:
^ 匹配字符串的开头位置。
$ 匹配支付传的结尾位置。
*
- 报表工具与报表性能的关系
datamachine
报表工具birt报表性能润乾报表
在选择报表工具时,性能一直是用户关心的指标,但是,报表工具的性能和整个报表系统的性能有多大关系呢?
要回答这个问题,首先要分析一下报表的处理过程包含哪些环节,哪些环节容易出现性能瓶颈,如何优化这些环节。
一、报表处理的一般过程分析
1、用户选择报表输入参数后,报表引擎会根据报表模板和输入参数来解析报表,并将数据计算和读取请求以SQL的方式发送给数据库。
2、
- 初一上学期难记忆单词背诵第一课
dcj3sjt126com
wordenglish
what 什么
your 你
name 名字
my 我的
am 是
one 一
two 二
three 三
four 四
five 五
class 班级,课
six 六
seven 七
eight 八
nince 九
ten 十
zero 零
how 怎样
old 老的
eleven 十一
twelve 十二
thirteen
- 我学过和准备学的各种技术
dcj3sjt126com
技术
语言VB https://msdn.microsoft.com/zh-cn/library/2x7h1hfk.aspxJava http://docs.oracle.com/javase/8/C# https://msdn.microsoft.com/library/vstudioPHP http://php.net/manual/en/Html
- struts2中token防止重复提交表单
蕃薯耀
重复提交表单struts2中token
struts2中token防止重复提交表单
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年7月12日 11:52:32 星期日
ht
- 线性查找二维数组
hao3100590
二维数组
1.算法描述
有序(行有序,列有序,且每行从左至右递增,列从上至下递增)二维数组查找,要求复杂度O(n)
2.使用到的相关知识:
结构体定义和使用,二维数组传递(http://blog.csdn.net/yzhhmhm/article/details/2045816)
3.使用数组名传递
这个的不便之处很明显,一旦确定就是不能设置列值
//使
- spring security 3中推荐使用BCrypt算法加密密码
jackyrong
Spring Security
spring security 3中推荐使用BCrypt算法加密密码了,以前使用的是md5,
Md5PasswordEncoder 和 ShaPasswordEncoder,现在不推荐了,推荐用bcrpt
Bcrpt中的salt可以是随机的,比如:
int i = 0;
while (i < 10) {
String password = "1234
- 学习编程并不难,做到以下几点即可!
lampcy
javahtml编程语言
不论你是想自己设计游戏,还是开发iPhone或安卓手机上的应用,还是仅仅为了娱乐,学习编程语言都是一条必经之路。编程语言种类繁多,用途各 异,然而一旦掌握其中之一,其他的也就迎刃而解。作为初学者,你可能要先从Java或HTML开始学,一旦掌握了一门编程语言,你就发挥无穷的想象,开发 各种神奇的软件啦。
1、确定目标
学习编程语言既充满乐趣,又充满挑战。有些花费多年时间学习一门编程语言的大学生到
- 架构师之mysql----------------用group+inner join,left join ,right join 查重复数据(替代in)
nannan408
right join
1.前言。
如题。
2.代码
(1)单表查重复数据,根据a分组
SELECT m.a,m.b, INNER JOIN (select a,b,COUNT(*) AS rank FROM test.`A` A GROUP BY a HAVING rank>1 )k ON m.a=k.a
(2)多表查询 ,
使用改为le
- jQuery选择器小结 VS 节点查找(附css的一些东西)
Everyday都不同
jquerycssname选择器追加元素查找节点
最近做前端页面,频繁用到一些jQuery的选择器,所以特意来总结一下:
测试页面:
<html>
<head>
<script src="jquery-1.7.2.min.js"></script>
<script>
/*$(function() {
$(documen
- 关于EXT
tntxia
ext
ExtJS是一个很不错的Ajax框架,可以用来开发带有华丽外观的富客户端应用,使得我们的b/s应用更加具有活力及生命力。ExtJS是一个用 javascript编写,与后台技术无关的前端ajax框架。因此,可以把ExtJS用在.Net、Java、Php等各种开发语言开发的应用中。
ExtJs最开始基于YUI技术,由开发人员Jack
- 一个MIT计算机博士对数学的思考
xjnine
Math
在过去的一年中,我一直在数学的海洋中游荡,research进展不多,对于数学世界的阅历算是有了一些长进。为什么要深入数学的世界?作为计算机的学生,我没有任何企图要成为一个数学家。我学习数学的目的,是要想爬上巨人的肩膀,希望站在更高的高度,能把我自己研究的东西看得更深广一些。说起来,我在刚来这个学校的时候,并没有预料到我将会有一个深入数学的旅程。我的导师最初希望我去做的题目,是对appe