Linux 文件系统 重要总结

http://www.opsers.org/base/one-day-the-little-learning-linux-inode-detailed.html
最后我们来做个总结:
1、一个Inode对应一个文件,而一个文件根据其大小,会占用多块blocks。
2、更为准确的来说,一个文件只对应一个Inode。因为硬链接其实不是创建新文件,只是在Directory中写入了新的对应关系而已。
3、当我们删除文件的时候,只是把Inode标记为可用,文件在block中的内容是没有被清除的,只有在有新的文件需要占用block的时候,才会被覆盖。


重要文章
//@@linux block 设备基本总结-来自于linux设备驱动开发详解  
http://h1372865100.blog.163.com/blog/static/21042910320133225445698/


//@@inode结构体成员详解
http://blog.csdn.net/trochiluses/article/details/9354557
//@@文件系统专题之 “索引节点高速缓存”
http://blog.csdn.net/trochiluses/article/details/9354385


  filp_open()主要调用以下两个函数
(1)     open_namei():填充目标文件所在目录的dentry结构 和 所在文件系统的vfsmount结构。在dentry结构中dentry->d_inode就指向目标文件的索引节点。这个函数比较复杂和庞大,在此为了突出主题,后面我们只介绍与主题相关的内容。
(2)     dentry_open():建立目标文件的一个“上下文”,即file数据结构,并让它与当前进程的task_strrct结构挂上钩。同时,在这个函数中,调用了具体文件系统的打开函数,即f_op->open()。该函数返回指向新建立的file结构的指针。
     open_namei()函数通过path_walk()与目录项高速缓存(即目录项哈希表)打交道,而path_walk()又调用具体文件系统的inode_operations->lookup()方法;该方法从磁盘找到并读入当前节点的目录项,然后通过iget(sb, ino),根据索引节点号从磁盘读入相应索引节点并在内存建立起相应的inode结构,这就到了我们讨论的索引节点高速缓存。

当索引节点读入内存后,通过调用d_add(dentry, inode),就将dentry结构和inode结构之间的链接关系建立起来。两个数据结构之间的联系是双向的。一方面,dentry结构中的指针d_inode指向inode结构,这是一对一的关系,因为一个目录项只对应着一个文件。反之则不然,同一个文件可以有多个不同的文件名或路径(通过系统调用link()建立,注意与符号连接的区别,那是由symlink()建立的),所以从inode结构到dentry结构的方向是一对多的关系。因此, inode结构的i_ dentry是个队列,dentry结构通过其队列头部d_alias挂入相应inode结构的队列中。


//stat、fstat和lstat函数(UNIX)
#include<sys/types.h>
#include<sys/stat.h>
int stat(const char *restrict pathname, struct stat *restrict buf);
提供文件名字,获取文件对应属性。感觉一般是文件没有打开的时候这样操作。
int fstat(int filedes, struct stat *buf);
通过文件描述符获取文件对应的属性。文件打开后这样操作
int lstat(const char *restrict pathname, struct stat *restrict buf);
连接文件


//返回值:
三个函数的返回:若成功则为0,若出错则为-1   错误代码存于errno
给定一个pathname,stat函数返回一个与此命名文件有关的信息结构,
fstat函数获得已在描述符filedes上打开的文件的有关信息。
lstat函数类似于stat,但是当命名的文件是一个符号连接时,lstat返回该符号连接的有关信息,而不是由该符号连接引用的文件的信息。


第二个参数是个指针,它指向一个我们应提供的结构。这些函数填写由buf指向的结构。该结构的实际定义可能随实现而有所不同,但其基本形式是:


ls 命令及其许多参数提供了一些非常有用的文件信息。另一个不太为人所熟知的命令 stat 提供了一些更为有用的信息。 


fstat系统调用接受的是 一个“文件描述符”,而另外两个则直接接受“文件全路径”。文件描述符是需要我们用open系统调用后才能得到的,而文件全路经直接写就可以了。


stat和lstat的区别:当文件是一个符号链接时,lstat返回的是该符号链接本身的信息;而stat返回的是该链接指向的文件的信息。






struct stat {
    dev_t         st_dev;       //文件的设备编号
    ino_t         st_ino;       //节点
    mode_t        st_mode;      //文件的类型和存取的权限
    nlink_t       st_nlink;     //连到该文件的硬连接数目,刚建立的文件值为1
    uid_t         st_uid;       //用户ID
    gid_t         st_gid;       //组ID
    dev_t         st_rdev;      //(设备类型)若此文件为设备文件,则为其设备编号
    off_t         st_size;      //文件字节数(文件大小)
    unsigned long st_blksize;   //块大小(文件系统的I/O 缓冲区大小)
    unsigned long st_blocks;    //块数
    time_t        st_atime;     //最后一次访问时间
    time_t        st_mtime;     //最后一次修改时间
    time_t        st_ctime;     //最后一次改变时间(指属性)
};


先前所描述的st_mode 则定义了下列数种情况:
    S_IFMT   0170000    文件类型的位遮罩
    S_IFSOCK 0140000    scoket
    S_IFLNK 0120000     符号连接
    S_IFREG 0100000     一般文件
    S_IFBLK 0060000     区块装置
    S_IFDIR 0040000     目录
    S_IFCHR 0020000     字符装置
    S_IFIFO 0010000     先进先出


    S_ISUID 04000     文件的(set user-id on execution)位
    S_ISGID 02000     文件的(set group-id on execution)位
    S_ISVTX 01000     文件的sticky位


    S_IRUSR(S_IREAD) 00400     文件所有者具可读取权限
    S_IWUSR(S_IWRITE)00200     文件所有者具可写入权限
    S_IXUSR(S_IEXEC) 00100     文件所有者具可执行权限


    S_IRGRP 00040             用户组具可读取权限
    S_IWGRP 00020             用户组具可写入权限
    S_IXGRP 00010             用户组具可执行权限


    S_IROTH 00004             其他用户具可读取权限
    S_IWOTH 00002             其他用户具可写入权限
    S_IXOTH 00001             其他用户具可执行权限


    上述的文件类型在POSIX中定义了检查这些类型的宏定义:
    S_ISLNK (st_mode)    判断是否为符号连接
    S_ISREG (st_mode)    是否为一般文件
    S_ISDIR (st_mode)    是否为目录
    S_ISCHR (st_mode)    是否为字符装置文件
    S_ISBLK (s3e)        是否为先进先出
    S_ISSOCK (st_mode)   是否为socket


//若一目录具有sticky位(S_ISVTX),则表示在此目录下的文件只能被该文件所有者、此目录所有者或root来删除或改名。


-----------------------------------------------------
struct statfs {
    long    f_type;          //文件系统类型
    long    f_bsize;         //块大小
    long    f_blocks;        //块多少
    long    f_bfree;         //空闲的块
    long    f_bavail;        //可用块
    long    f_files;         //总文件节点
    long    f_ffree;         //空闲文件节点
    fsid_t f_fsid;           //文件系统id
    long    f_namelen;       //文件名的最大长度
    long    f_spare[6];      //spare for later
};








下面演示了如何对可执行文件“oracle”(位于 $ORACLE_HOME/bin 目录下)使用此命令。  
 //例子1
# cd $ORACLE_HOME/bin   
# stat oracle   
  File: `oracle'   
  Size: 93300148        Blocks:182424     IO Block:4096   Regular File   
Device: 343h/835d       Inode: 12009652    Links: 1       
Access: (6751/-rwsr-s--x)  Uid:(  500/  oracle)   Gid:(  500/     dba)   
Access: 2006-08-04 04:30:52.000000000 -0400  
Modify: 2005-11-02 11:49:47.000000000 -0500  
Change: 2005-11-02 11:55:24.000000000 -0500  


注意使用该命令获得的信息:除了通常的文件大小(也可以使用 ls -l 命令获得)以外,您还获得了该文件占用的块数。通常的 Linux 块大小为 512 字节,因此一个大小为 93,300,148 字节的文件将占用 (93300148/512=) 182226.85 个块。由于块都是完整占用,因此该文件使用了一些整数个数的块。无需猜测就可以获得确切的块数。 


您还可以从以上输出中获得文件所有权的 GID 和 UID,以及权限的八进制表示形式 (6751)。如果要将文件恢复到它现在具有的相同权限,可以使用 chmod 6751 oracle,而不是显式拼写这些权限。 


以上输出最有用的部分是文件访问时间戳信息。该输出显示,该文件被访问的时间是 2006-08-04 04:30:52(显示在“Access:”的旁边),即 2006 年 8 月 4 日上午 4:30:52。这是某个人开始使用数据库的时间。该文件的date.html' target='_blank'>修改时间是 2005-11-02 11:49:47(显示在“Modify:”的旁边)。最后,“Change:”旁边的时间戳显示文件状态更改的时间。 
//例子2
#include<sys/stat.h>
#include<unistd.h>
mian()
{
struct stat buf;
stat (“/etc/passwd”,&buf);
printf(“/etc/passwd file size = %d \n”,buf.st_size);
}




//例子3
//利用stat对文件类型进行判断:
type = lstat(p, &buf);
    switch (buf.st_mode & S_IFMT)
{
    case S_IFREG://普通文件
        type = 1;
        break;
    case S_IFDIR://文件目录
        type = 2;
        break;
    case S_IFCHR://字符设备
        type = 3;
        break;
    case S_IFBLK:// 块设备
        type = 4;
        break;
    case S_IFIFO:// 流式文件(管道)
        type = 5;
        break;
    case S_IFLNK:// 符号链接
        type = 6;
        break;
    case S_IFSOCK:// 套接字
        type = 7;
        break;
    }


参考:
http://my.oschina.net/hiliusl/blog/188656
http://blog.csdn.net/clozxy/article/details/7645284


不错的文章:
linux下关于结构体stat的一些应用
http://blog.csdn.net/xiakan008/article/details/5903879

Linux系统调用都对应着一个具体的数字,Linux内核通过位于0x80中断管理这些系统调用,这些系统调用对应的数字和相应的参数都在被调用的时候送到对应的寄存器中
tips
系统调用实际上是一个序列号,表示其在系统中的数组sys_call_table[] 中的位置
具体使用中,Linux为系统调用在标准C函数库中设置了具有相同名字的函数,用户可以通过相应的调用方法来对这些函数进行调用,这些函数调用内核服务




通用库函数调用,可以调用一个或多个内核系统调用,但它们不是内核的入口点,例如 atoi函数


扇区(Sector)为最小的物理储存单位,每个扇区为 512 bytes;
将扇区组成一个圆,那就是磁柱(Cylinder),磁柱是分割槽(partition)的最小单位;
第一个扇区最重要,里面有:(1)主要启动区(Master boot record, MBR)及分割表(partition table), 其中 MBR 占有 446 bytes,而 partition table 则占有 64 bytes。


perblock:记录此 filesystem 的整体信息,包括inode/block的总量、使用量、剩余量, 以及文件系统的格式与相关信息等;
inode:记录文件的属性,一个文件占用一个inode,同时记录此文件的数据所在的 block 号码;
block:实际记录文件的内容,若文件太大时,会占用多个 block 


原则上,block 的大小与数量在格式化完就不能够再改变了(除非重新格式化);
每个 block 内最多只能够放置一个文件的数据;
承上,如果文件大于 block 的大小,则一个文件会占用多个 block 数量;
承上,若文件小于 block ,则该 block 的剩余容量就不能够再被使用了(磁盘空间会浪费
inode
inode table
Superblock   大小 1024bytes  通过dumpe2f 查看
block bitmap (区块对照表)
inode bitmap (inode 对照表)
dumpe2fs 
 
Inode count:              1164592
Block count:              4657920
First block:              0
Block size:               4096
blocks per group:         32768
Inodes per group:         8144
Inode blocks per group:   509
First inode:              11
Inode size:               256




Group 0: (Blocks 0-32767) [ITABLE_ZEROED]
Checksum 0x1fa1, unused inodes 8130
Primary superblock at 0, Group descriptors at 1-2
Reserved GDT blocks at 3-1024
Block bitmap at 1025 (+1025), Inode bitmap at 1041 (+1041)
Inode table at 1057-1565 (+1057)
23561 free blocks, 8132 free inodes, 2 directories, 8130 unused inodes
Free blocks: 9207-32767
Free inodes: 13-8144


参考 Ext2 官网提供的解说文件,这份文件非常值得参考的!
文章名称:『Design and Implementation of the Second Extended Filesystem 』
http://e2fsprogs.sourceforge.net/ext2intro.html
与 Boot sector 及 Superblock 的探讨有关的讨论文章:
The Second Extended File System: http://www.nongnu.org/ext2-doc/ext2.html
Rob's ext2 documentation: http://www.landley.net/code/toybox/ext2.html
Life is different blog: ext2文件系统分析: http://www.qdhedu.com/blog/post/7.html


其他值得参考的 Ext2 相关文件系统文章之连结如下:
The Second Extended File System - An introduction: http://www.freeos.com/articles/3912/
ext3 or ReiserFS? Hans Reiser Says Red Hat's Move Is Understandable
http://www.linuxplanet.com/linuxplanet/reports/3726/1/ 文件系统的比较:维基百科:http://en.wikipedia.org/wiki/Comparison_of_file_systems
注8:NTFS 文件系统官网:Linux-NTFS Project: http://www.linux-ntfs.org/






//@@Linux struct inode结构
http://www.cnblogs.com/wanghetao/archive/2012/05/28/2521675.html
索引节点对象由inode结构体表示,定义文件在linux/fs.h中。


struct inode {
        struct hlist_node       i_hash;              /* 哈希表 */
        struct list_head        i_list;              /* 索引节点链表 */
        struct list_head        i_dentry;            /* 目录项链表 */
        unsigned long           i_ino;               /* 节点号 */
        atomic_t                i_count;             /* 引用记数 */
        umode_t                 i_mode;              /* 访问权限控制 */
        unsigned int            i_nlink;             /* 硬链接数 */
        uid_t                   i_uid;               /* 使用者id */
        gid_t                   i_gid;               /* 使用者id组 */
        kdev_t                  i_rdev;              /* 实设备标识符 */
        loff_t                  i_size;              /* 以字节为单位的文件大小 */
        struct timespec         i_atime;             /* 最后访问时间 */
        struct timespec         i_mtime;             /* 最后修改(modify)时间 */
        struct timespec         i_ctime;             /* 最后改变(change)时间 */
        unsigned int            i_blkbits;           /* 以位为单位的块大小 */
        unsigned long           i_blksize;           /* 以字节为单位的块大小 */
        unsigned long           i_version;           /* 版本号 */
        unsigned long           i_blocks;            /* 文件的块数 */
        unsigned short          i_bytes;             /* 使用的字节数 */
        spinlock_t              i_lock;              /* 自旋锁 */
        struct rw_semaphore     i_alloc_sem;         /* 索引节点信号量 */
        struct inode_operations *i_op;               /* 索引节点操作表 */
        struct file_operations  *i_fop;              /* 默认的索引节点操作 */
        struct super_block      *i_sb;               /* 相关的超级块 */
        struct file_lock        *i_flock;            /* 文件锁链表 */
        struct address_space    *i_mapping;          /* 相关的地址映射 */
        struct address_space    i_data;              /* 设备地址映射 */
        struct dquot            *i_dquot[MAXQUOTAS]; /* 节点的磁盘限额 */
        struct list_head        i_devices;           /* 块设备链表 */
        struct pipe_inode_info  *i_pipe;             /* 管道信息 */
        struct block_device     *i_bdev;             /* 块设备驱动 */
        unsigned long           i_dnotify_mask;      /* 目录通知掩码 */
        struct dnotify_struct   *i_dnotify;          /* 目录通知 */
        unsigned long           i_state;             /* 状态标志 */
        unsigned long           dirtied_when;        /* 首次修改时间 */
        unsigned int            i_flags;             /* 文件系统标志 */
        unsigned char           i_sock;              /* 可能是个套接字吧 */
        atomic_t                i_writecount;        /* 写者记数 */
        void                    *i_security;         /* 安全模块 */
        __u32                   i_generation;        /* 索引节点版本号 */
        union {
                void            *generic_ip;         /* 文件特殊信息 */
        } u;
};


//@@索引节点的操作inode_operations定义在linux/fs.h中 


struct inode_operations {
        int (*create) (struct inode *, struct dentry *,int);
        /*VFS通过系统调用create()和open()来调用该函数,从而为dentry对象创建一个新的索引节点。在创建时使用mode制定初始模式*/
        struct dentry * (*lookup) (struct inode *, struct dentry *);
        /*该韩式在特定目录中寻找索引节点,该索引节点要对应于dentry中给出的文件名*/
        int (*link) (struct dentry *, struct inode *, struct dentry *);
        /*该函数被系统调用link()电泳,用来创建硬连接。硬链接名称由dentry参数指定,连接对象是dir目录中ld_dentry目录想所代表的文件*/
        int (*unlink) (struct inode *, struct dentry *);
        /*该函数被系统调用unlink()调用,从目录dir中删除由目录项dentry制动的索引节点对象*/
        int (*symlink) (struct inode *, struct dentry *, const char *);
        /*该函数被系统电泳symlik()调用,创建符号连接,该符号连接名称由symname指定,连接对象是dir目录中的dentry目录项*/
        int (*mkdir) (struct inode *, struct dentry *, int);
        /*该函数被mkdir()调用,创建一个新目录。创建时使用mode制定的初始模式*/
        int (*rmdir) (struct inode *, struct dentry *);
        /*该函数被系统调用rmdir()调用,删除dir目录中的dentry目录项代表的文件*/
        int (*mknod) (struct inode *, struct dentry *, int, dev_t);
        /*该函数被系统调用mknod()调用,创建特殊文件(设备文件、命名管道或套接字)。要创建的文件放在dir目录中,其目录项问dentry,关联的设备为rdev,初始权限由mode指定*/
        int (*rename) (struct inode *, struct dentry *,
                       struct inode *, struct dentry *);
        /*VFS调用该函数来移动文件。文件源路径在old_dir目录中,源文件由old_dentry目录项所指定,目标路径在new_dir目录中,目标文件由new_dentry指定*/
        int (*readlink) (struct dentry *, char *, int);
        /*该函数被系统调用readlink()调用,拷贝数据到特定的缓冲buffer中。拷贝的数据来自dentry指定的符号链接,最大拷贝大小可达到buflen字节*/
        int (*follow_link) (struct dentry *, struct nameidata *);
        /*该函数由VFS调用,从一个符号连接查找他指向的索引节点,由dentry指向的连接被解析*/
        int (*put_link) (struct dentry *, struct nameidata *);
        /*在follow_link()调用之后,该函数由vfs调用进行清楚工作*/
        void (*truncate) (struct inode *);
        /*该函数由VFS调用,修改文件的大小,在调用之前,索引节点的i_size项必须被设置成预期的大小*/
        int (*permission) (struct inode *, int);
        /*该函数用来检查给低昂的inode所代表的文件是否允许特定的访问模式,如果允许特定的访问模式,返回0,否则返回负值的错误码。多数文件系统 都将此区域设置为null,使用VFS提供的通用方法进行检查,这种检查操作仅仅比较索引及诶但对象中的访问模式位是否和mask一致,比较复杂的系统, 比如支持访问控制链(ACL)的文件系统,需要使用特殊的permission()方法*/
        int (*setattr) (struct dentry *, struct iattr *);
        /*该函数被notify_change调用,在修改索引节点之后,通知发生了改变事件*/
        int (*getattr) (struct vfsmount *, struct dentry *, struct kstat *);
        /*在通知索引节点需要从磁盘中更新时,VFS会调用该函数*/
        int (*setxattr) (struct dentry *, const char *,
                         const void *, size_t, int);
        /*该函数由VFS调用,向dentry指定的文件设置扩展属性,属性名为name,值为value*/
        ssize_t (*getxattr) (struct dentry *, const char *, void *, size_t);
        /*该函数被VFS调用,向value中拷贝给定文件的扩展属性name对应的数值*/
        ssize_t (*listxattr) (struct dentry *, char *, size_t);
        /*该函数将特定文件所有属性别表拷贝到一个缓冲列表中*/
        int (*removexattr) (struct dentry *, const char *);
        /*该函数从给定文件中删除指定的属性*/
};




//@@解析 Linux 中的 VFS 文件系统机制
http://www.ibm.com/developerworks/cn/linux/l-vfs/


ramfs_read_super() 函数在分配和初始化了 inode 结构之后,会调用 d_alloc_root() 函数来为 VFS的目录树建立起关键的根目录 (struct dentry)dentry,并将 dentry 中的 d_sb 指针指向 sb,d_inode 指针指向 inode。


//VFS 目录树的建立
既然是树,所以根是其赖以存在的基础,本节阐述 Linux 在初始化阶段是如何建立根结点的,即 "/"目录。这其中会包括挂载 rootfs 文件系统到根目录 "/" 的具体过程。构造根目录的代码是在 init_mount_tree() 函数 (fs\namespace.c) 中。
首先,init_mount_tree() 函数会调用 do_kern_mount("rootfs", 0, "rootfs", NULL) 来挂载前面已经注册了的 rootfs 文件系统。这看起来似乎有点奇怪,因为根据前面的说法,似乎是应该先有挂载目录,然后再在其上挂载相应的文件系统,然而此时 VFS 似乎并没有建立其根目录。没关系,这是因为这里我们调用的是 do_kern_mount(),这个函数内部自然会创建我们最关心也是最关键的根目录(在 Linux 中,目录对应的数据结构是 struct dentry)。
在这个场景里,do_kern_mount() 做的工作主要是:
1)调用 alloc_vfsmnt() 函数在内存里申请了一块该类型的内存空间(struct vfsmount *mnt),并初始化其部分成员变量。
2) 调用 get_sb_nodev() 函数在内存中分配一个超级块结构 (struct super_block) sb,并初始化其部分成员变量,将成员 s_instances 插入到 rootfs 文件系统类型结构中的 fs_supers 指向的双向链表中。
3) 通过 rootfs 文件系统中的 read_super 函数指针调用 ramfs_read_super() 函数。还记得当初注册rootfs 文件系统时,其成员 read_super 指针指向了 ramfs_read_super() 函数,参见图2.
4) ramfs_read_super() 函数调用 ramfs_get_inode() 在内存中分配了一个 inode 结构 (struct inode) inode,并初始化其部分成员变量,其中比较重要的有 i_op、i_fop 和 i_sb:
inode->i_op = &ramfs_dir_inode_operations;
inode->i_fop = &dcache_dir_ops;
inode->i_sb = sb;
5) ramfs_read_super() 函数在分配和初始化了 inode 结构之后,会调用 d_alloc_root() 函数来为 VFS的目录树建立起关键的根目录 (struct dentry)dentry,并将 dentry 中的 d_sb 指针指向 sb,d_inode 指针指向 inode。
6) 将 mnt 中的 mnt_sb 指针指向 sb,mnt_root 和 mnt_mountpoint 指针指向 dentry,而 mnt_parent指针则指向自身。






struct file ──字符设备驱动相关重要结构
truct file结构体定义在include/linux/fs.h中定义。文件结构体代表一个打开的文件,系统中的每个打开的文件在内核空间都有一个关联的 struct file。它由内核在打开文件时创建,并传递给在文件上进行操作的任何函数。在文件的所有实例都关闭后,内核释放这个数据结构。在内核创建和驱动源码中,struct file的指针通常被命名为file或filp。如下所示:
struct file {
        union {
             struct list_head fu_list;// 文件对象链表指针linux/include/linux/list.h
             struct rcu_head fu_rcuhead; //RCU(Read-Copy Update)是Linux 2.6内核中新的锁机制
        } f_u;
        struct path f_path; // 包含dentry和mnt两个成员,用于确定文件路径
        #define f_dentry  f_path.dentry  f_path的成员之一,当前文件的dentry结构
        #define f_vfsmnt  f_path.mnt  表示当前文件所在文件系统的挂载根目录
        const struct file_operations *f_op; 与该文件相关联的操作函数
        atomic_t  f_count; 文件的引用计数(有多少进程打开该文件)
        unsigned int  f_flags;  对应于open时指定的flag
        mode_t  f_mode; 读写模式:open的mod_t mode参数
        off_t  f_pos; 该文件在当前进程中的文件偏移量
        struct fown_struct f_owner; 该结构的作用是通过信号进行I/O时间通知的数据。
        unsigned int  f_uid, f_gid; 文件所有者id,所有者组id
        struct file_ra_state f_ra;  在linux/include/linux/fs.h中定义,文件预读相关
        unsigned long f_version;
        #ifdef CONFIG_SECURITY
             void  *f_security;
        #endif
        /* needed for tty driver, and maybe others */
        void *private_data;
        #ifdef CONFIG_EPOLL
        /* Used by fs/eventpoll.c to link all the hooks to this file */
        struct list_head f_ep_links;
        spinlock_t f_ep_lock;
       #endif /* #ifdef CONFIG_EPOLL */
       struct address_space *f_mapping;
};




truct dentry
dentry 的中文名称是目录项,是Linux文件系统中某个索引节点(inode)的链接。这个索引节点可以是文件,也可以是目录。inode(可理解为ext2 inode)对应于物理磁盘上的具体对象,dentry是一个内存实体,其中的d_inode成员指向对应的inode。也就是说,一个inode可以在运行的时候链接多个dentry,而d_count记录了这个链接的数量。
struct dentry { 
        atomic_t d_count; 目录项对象使用计数器,可以有未使用态,使用态和负状态                                            
        unsigned int d_flags; 目录项标志 
        struct inode * d_inode; 与文件名关联的索引节点 
        struct dentry * d_parent; 父目录的目录项对象 
        struct list_head d_hash; 散列表表项的指针 
        struct list_head d_lru; 未使用链表的指针 
        struct list_head d_child; 父目录中目录项对象的链表的指针 
        struct list_head d_subdirs;对目录而言,表示子目录目录项对象的链表 
        struct list_head d_alias; 相关索引节点(别名)的链表 
        int d_mounted; 对于安装点而言,表示被安装文件系统根项 
        struct qstr d_name; 文件名 
        unsigned long d_time; /* used by d_revalidate */ 
        struct dentry_operations *d_op; 目录项方法 
        struct super_block * d_sb; 文件的超级块对象 
        vunsigned long d_vfs_flags; 
        void * d_fsdata;与文件系统相关的数据 
        unsigned char d_iname [DNAME_INLINE_LEN]; 存放短文件名


};



你可能感兴趣的:(数据结构,linux,文件系统)