一.费马小定里
if n is prime and (a,n) equals one ,then a^(n-1) = 1 (mod n)
费马小定理只是个必要条件,符合费马小定理而非素数的数叫做Carmichael.
前3个Carmichael数是561,1105,1729。
Carmichael数是非常少的。
在1~100000000范围内的整数中,只有255个Carmichael数。
为此又有二次探测定理,以确保该数为素数:
二.二次探测定理
二次探测定理 如果p是一个素数,0<x<p,则方程x^2≡1(mod p)的解为x=1,p-1
根据以上两个定理,如到Miller-Rabin算法的一般步骤:
0、先计算出m、j,使得n-1=m*2^j,其中m是正奇数,j是非负整数
1、随机取一个b,2<=b
2、计算v=b^m mod n
3、如果v==1,通过测试,返回
4、令i=1
5、如果v=n-1,通过测试,返回
6、如果i==j,非素数,结束
7、v=v^2 mod n,i=i+1
8、循环到5
说明:
Miller-Rabin是随机算法
得到的结果的正确率为 75%,所以应该多次调用该函数,使正确概率提高为
1-(1/4)^p
Fermat小定理:
若n是素数,则对所有1≤a≤n-1的整数a,有a^(n-1)mod n=1;
该定理的逆否命题也成立,即a^(n-1)mod n!=1,则n为合数.但是费马定律的逆命题就不一定成立了,比如当a=4,n=15时,4^14mod15=1,但是4不是素数而是合数.
Fermat(n) {
a ←uniform(1..n-1);
if a^(n-1)modn=1 then
return true; //未必正确
else
return false;//正确,一定是合数
}
不过,从大量数据统计来看,如果满足a^(n-1)mod n=1,则n较大概率为素数.那么,我们把那些使得n原本为合数而被看成素数的a叫做伪证据,n为伪素数.同样从大量数据看出有些伪素数n有很多伪证据 a,比如当n=561,a有318个可使得结果判为素数.所以,我们定义了强伪素数概念:
强伪素数
Btest(a,n){
//n为奇数,返回true。即返回真说明n是强伪素数
s←0; t ←n-1; //t开始为偶数
repeat
s++;t ← t÷2;
until t mod 2 = 1; //n-1=2st t为奇数
x ←at mod n;
if x=1 or x=n-1 then return true; //满足①or②。
for i ←1 to s-1 do{
x ←x2 mod n;
if x=n-1 then return true; //满足②,
}
return false;}
通过这一定义则发现,小于1000的奇合数中,随机选到一个强伪证据的概率小于1%
更重要的是,对任一奇合数,强伪证据比例都很小
所以,我们可以多次运行下面的算法,就可把错误概率降低我们可控制的范围
RepeatMillRob(n,k){