Southeastern European Regional Programming Contest 2010 D Problemsetting

又一次在比赛中碰到网络流,又一次没有搞出来,剁手啊!!!

刚开始队友跟我说这题像是网络流,但我想了想,觉得最大流不能保证每个比赛节点都能满流,所以。。。。。

赛后队友想到了可以用二进制枚举当前选取的比赛。这时我才顿悟。。。用网络流。。。根据选取的比赛建二分图,左边节点为题目节点,而每次只需把当前枚举的比赛加到右边节点中!这样的话,只要所有右边节点能满流,就说明当前枚举策略可行!时间复杂度2^15*(max_flow()),好暴力。。。不过在bnuoj上444ms过,爽爽的。。。

#include<iostream>
#include<algorithm>
#include<vector>
#include<string>
#include<stack>
#include<queue>
#include<map>
#include<set>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<sstream>
#define FF(i, a, b) for(int i=a; i<b; i++)
#define FD(i, a, b) for(int i=a; i>b; i--)
#define REP(i, n) for(int i=0; i<n; i++)
#define CLR(a, b) memset(a, b, sizeof(a))
#define LL long long
#define PB push_back
using namespace std;
const int maxn = 1111;
const int INF = 100000000;

struct Edge
{
    int from, to, cap, flow;
};

int n, m, a[maxn], s, t;
map<string, int> mp;
vector<int> pro[maxn];
vector<Edge> edges;
vector<int> G[maxn];
bool vis[maxn];
int d[maxn], cur[maxn];

void init()
{
    s = 0, t = n + m + 1;
    REP(i, maxn) G[i].clear(); edges.clear();
}
void add(int from, int to, int cap)
{
    edges.PB((Edge){from, to, cap, 0});
    edges.PB((Edge){to, from, 0, 0});
    int tmp = edges.size();
    G[from].PB(tmp-2);
    G[to].PB(tmp-1);
}
bool bfs()
{
    CLR(vis, 0); vis[s] = 1, d[s] = 0;
    queue<int> q; q.push(s);
    while(!q.empty())
    {
        int x = q.front(); q.pop();
        for(int i=0; i<G[x].size(); i++)
        {
            Edge& e = edges[G[x][i]];
            if(!vis[e.to] && e.cap > e.flow)
            {
                vis[e.to] = 1;
                d[e.to] = d[x] + 1;
                q.push(e.to);
            }
        }
    }
    return vis[t];
}
int dfs(int x, int a)
{
    if(x == t || a == 0) return a;
    int flow=0, f;
    for(int& i=cur[x]; i<G[x].size(); i++)
    {
        Edge& e = edges[G[x][i]];
        if(d[e.to] == d[x]+1 && (f = dfs(e.to, min(a, e.cap-e.flow))) > 0)
        {
            e.flow += f;
            edges[G[x][i]^1].flow -= f;
            flow += f;
            a -= f;
            if(a == 0) break;
        }
    }
    return flow;
}
int max_flow()
{
    int flow = 0;
    while(bfs())
    {
        CLR(cur, 0); flow += dfs(s, INF);
    }
    return flow;
}

int main()
{
    int kase = 1; char str[1111111], tmp[111];
    while(scanf("%d%d", &n, &m), n+m)
    {
        mp.clear(); REP(i, n+1) pro[i].clear();
        FF(i, 1, n+1)
        {
            scanf("%s%d", tmp, &a[i]);
            mp[tmp] = i;
        }
        gets(str);
        FF(i, 1, m+1)
        {
            gets(str);
            istringstream in(str);
            while(in >> tmp)    pro[mp[tmp]].PB(i);
        }
        int ans = 0;
        FF(f, 1,(1<<n))
        {
            int cnt = 0, sum = 0;
            init();
            REP(i, n) if(f & (1<<i))
            {
                sum += a[i+1], cnt++;
                add(i+m+1, t, a[i+1]);
            }
            if(sum > m) continue;
            if(cnt < ans) continue;
            FF(i, 1, m+1) add(s, i, 1);
            REP(i, n)
            {
                if(f && (1<<i))
                for(int j=0; j<pro[i+1].size(); j++)
                {
                    int v = pro[i+1][j];
                    add(v, i+m+1, 1);
                }
            }
            if(max_flow() == sum) ans = cnt;
        }
        printf("Case #%d: %d\n", kase++, ans);
    }
    return 0;
}


你可能感兴趣的:(Southeastern European Regional Programming Contest 2010 D Problemsetting)