CUDA学习笔记六



Exposing Parallelism

这部分主要介绍并行分析,涉及掌握nvprof的几个metric参数,具体的这些调节为什么会影响性能会在后续博文解释。

代码准备

下面是我们的kernel函数sumMatrixOnGPUD:

__global__ void sumMatrixOnGPU2D(float *A, float *B, float *C, int NX, int NY) {
    unsigned int ix = blockIdx.x * blockDim.x + threadIdx.x;
    unsigned int iy = blockIdx.y * blockDim.y + threadIdx.y;
    unsigned int idx = iy * NX + ix;
    if (ix < NX && iy < NY) {
        C[idx] = A[idx] + B[idx];
    }
}            

我们指定一个比较大的数据矩阵,包含16384个元素:

int nx = 1<<14;
int ny = 1<<14;

下面的代码用来配置main函数的参数,也就是block的维度配置:

if (argc > 2) {
    dimx = atoi(argv[1]);
    dimy = atoi(argv[2]);
}
dim3 block(dimx, dimy);
dim3 grid((nx + block.x - 1) / block.x, (ny + block.y - 1) / block.y);

编译:

$ nvcc -O3 -arch=sm_20 sumMatrix.cu -o sumMatrix

Checking Active Warps with nvprof

在做各项数据比较的时候需要有个基准,这里使用四个block配置的时间消耗作为基准观察,分别为(32,32)(32,16)(16,32)和(16,16),本文开始时有提到,第一个参数是x象限维度,第二个参数是y象限维度。

下面是几种配置的时间消耗输出结果:

$ ./sumMatrix 32 32
sumMatrixOnGPU2D <<< (512,512), (32,32) >>> elapsed 60 ms
$ ./sumMatrix 32 16
sumMatrixOnGPU2D <<< (512,1024), (32,16) >>> elapsed 38 ms
$ ./sumMatrix 16 32
sumMatrixOnGPU2D <<< (1024,512), (16,32) >>> elapsed 51 ms
$ ./sumMatrix 16 16
sumMatrixOnGPU2D <<< (1024,1024),(16,16) >>> elapsed 46 ms

比较这几个结果,不难发现,最慢的是第一个(32,32),最快的是第二个(32,16),这里可以猜测的到的是,拥有更多的block并行性更好。这个猜测可以使用nvprof 的 achieved_occupancy这个metric参数来验证。该参数的定义公式在 上一篇博文有介绍,实际上就是指每个SM在每个cycle能够达到的最大active warp数目占总warp的比例。下面是使用该参数后得到的结果:

$ nvprof --metrics achieved_occupancy ./sumMatrix 32 32
sumMatrixOnGPU2D <<<(512,512), (32,32)>>> Achieved Occupancy 0.501071
$ nvprof --metrics achieved_occupancy ./sumMatrix 32 16
sumMatrixOnGPU2D <<<(512,1024), (32,16)>>> Achieved Occupancy 0.736900
$ nvprof --metrics achieved_occupancy ./sumMatrix 16 32
sumMatrixOnGPU2D <<<(1024,512), (16,32)>>> Achieved Occupancy 0.766037
$ nvprof --metrics achieved_occupancy ./sumMatrix 16 16
sumMatrixOnGPU2D <<<(1024,1024),(16,16)>>> Achieved Occupancy 0.810691

从上面的输出可以得知两件事儿:

  1. 由于第二个配置比第一个有更多的block,device就会达到更多active warp(跟鸡蛋放在多个篮子的道理差不多)。也就是第二个性能优于第一个的原因。
  2. 第四个的achieved Occupancy最高,但是却不是最快的,因此,较高的achieved Occupancy并不一定就意味着更好的性能,也就是说还有更多的因素影响着GPU的性能。

checking memory operations with nvprof

对于C[idx] = A[idx] + B[idx]来说共有三个memory操作:两个memory load和一个memory store。要查看这些操作的效率可以使用nvprof的两个metric参数,如果想要查看memory的throughput,则可使用gld_throughput

$ nvprof --metrics gld_throughput./sumMatrix 32 32
sumMatrixOnGPU2D <<<(512,512), (32,32)>>> Global Load Throughput 35.908GB/s
$ nvprof --metrics gld_throughput./sumMatrix 32 16
sumMatrixOnGPU2D <<<(512,1024), (32,16)>>> Global Load Throughput 56.478GB/s
$ nvprof --metrics gld_throughput./sumMatrix 16 32
sumMatrixOnGPU2D <<<(1024,512), (16,32)>>> Global Load Throughput 85.195GB/s
$ nvprof --metrics gld_throughput./sumMatrix 16 16
sumMatrixOnGPU2D <<<(1024,1024),(16,16)>>> Global Load Throughput 94.708GB/s

不难看到,第四个拥有最高的load throughput,但是却比第二个慢(第二个也就是第四个的一半),所以,较高的load throughput也不一定就有较高的性能。之后讲到memory transaction时会具体分析这种现象的原因,简单说,就是高load throughput有可能是一种假象,如果需要的数据在memory中存储格式未对齐不连续,会导致许多额外的不必要的load操作,所以本文中的efficiency会这么低。

然后,我们可以使用nvprof的gld_efficiency来度量load efficiency,该metric参数是指我们确切需要的global load throughput与实际得到global load memory的比值。这个metric参数可以让我们知道,APP的load操作利用device memory bandwidth的程度:

$ nvprof --metrics gld_efficiency ./sumMatrix 32 32
sumMatrixOnGPU2D <<<(512,512), (32,32)>>> Global Memory Load Efficiency 100.00%
$ nvprof --metrics gld_efficiency ./sumMatrix 32 16
sumMatrixOnGPU2D <<<(512,1024), (32,16)>>> Global Memory Load Efficiency 100.00%
$ nvprof --metrics gld_efficiency ./sumMatrix 16 32
sumMatrixOnGPU2D <<<(1024,512), (16,32)>>> Global Memory Load Efficiency 49.96%
$ nvprof --metrics gld_efficiency ./sumMatrix 16 16
sumMatrixOnGPU2D <<<(1024,1024),(16,16)>>> Global Memory Load Efficiency 49.80%

从上述结果可知,最后两个的load efficiency只是前两个的一半。这也可以解释,为什么较高的throughput和较高的Occupancy却没有产生较好的性能。尽管最后两个的load操作数目要多不少(因为二者throughput较高),但是他们的load effecitiveness却低不少(由于efficiency较低)。

观察最后两个可以发现,他们block的x象限配置是warp的一半,由前文推测知,该象限应该保持为warp大小的整数倍。关于其具体原因将在后续博文详细解释。

Exposing More Parallelism

我们现在可以得出一个结论就是blockDim.x应该是warp大小的整数倍。这样做是很容易就提升了load efficiency。现在,我们可能还有其他疑惑,比如:

  • 继续调整blockDim.x是否会继续增加load throughput?
  • 还有其他方法能增大并行性吗?

现在,我们重新整一个基准数据出来,这两个问题可以从这个基准分析个大概:

$ ./sumMatrix 64 2
sumMatrixOnGPU2D <<<(256,8192), (64,2) >>> elapsed 0.033567 sec
$ ./sumMatrix 64 4
sumMatrixOnGPU2D <<<(256,4096), (64,4) >>> elapsed 0.034908 sec
$ ./sumMatrix 64 8
sumMatrixOnGPU2D <<<(256,2048), (64,8) >>> elapsed 0.036651 sec
$ ./sumMatrix 128 2
sumMatrixOnGPU2D <<<(128,8192), (128,2)>>> elapsed 0.032688 sec
$ ./sumMatrix 128 4
sumMatrixOnGPU2D <<<(128,4096), (128,4)>>> elapsed 0.034786 sec
$ ./sumMatrix 128 8
sumMatrixOnGPU2D <<<(128,2048), (128,8)>>> elapsed 0.046157 sec
$ ./sumMatrix 256 2
sumMatrixOnGPU2D <<<(64,8192), (256,2)>>> elapsed 0.032793 sec
$ ./sumMatrix 256 4
sumMatrixOnGPU2D <<<(64,4096), (256,4)>>> elapsed 0.038092 sec
$ ./sumMatrix 256 8
sumMatrixOnGPU2D <<<(64,2048), (256,8)>>> elapsed 0.000173 sec
Error: sumMatrix.cu:163, code:9, reason: invalid configuration argument

从上面数据,我们能够分析出来的是:

  • 最后一个配置(256,8)不可行,block中总共的thread数目超过了1024,这是GPU的硬件限制。
  • 最好的结果是第四个(128,2)。
  • 第一个启动了最多的block,但不是最快的。
  • 因为第二个与第四个在一个block中拥有相同数目的thread,本应猜测二者有相同的表现,但是实际却是第二个略逊色,所以blockDim.x的大小是很关键的。
  • 剩下的相对第四个都有较少的block数目,所以并行规模也是影响性能的关键因素。

现在,我们又得猜测了,拥有block最少的应该会有一个最低的achieved Occupancy吧?而拥有最多block的应该会达到最高的achieved Occupancy吧?为了验证这些想法,我们再看一组数据:

$ nvprof --metrics achieved_occupancy ./sumMatrix 64 2
sumMatrixOnGPU2D <<<(256,8192), (64,2) >>> Achieved Occupancy 0.554556
$ nvprof --metrics achieved_occupancy ./sumMatrix 64 4
sumMatrixOnGPU2D <<<(256,4096), (64,4) >>> Achieved Occupancy 0.798622
$ nvprof --metrics achieved_occupancy ./sumMatrix 64 8
sumMatrixOnGPU2D <<<(256,2048), (64,8) >>> Achieved Occupancy 0.753532
$ nvprof --metrics achieved_occupancy ./sumMatrix 128 2
sumMatrixOnGPU2D <<<(128,8192), (128,2)>>> Achieved Occupancy 0.802598
$ nvprof --metrics achieved_occupancy ./sumMatrix 128 4
sumMatrixOnGPU2D <<<(128,4096), (128,4)>>> Achieved Occupancy 0.746367
$ nvprof --metrics achieved_occupancy ./sumMatrix 128 8
sumMatrixOnGPU2D <<<(128,2048), (128,8)>>> Achieved Occupancy 0.573449
$ nvprof --metrics achieved_occupancy ./sumMatrix 256 2
sumMatrixOnGPU2D <<<(64,8192), (256,2) >>> Achieved Occupancy 0.760901
$ nvprof --metrics achieved_occupancy ./sumMatrix 256 4
sumMatrixOnGPU2D <<<(64,4096), (256,4) >>> Achieved Occupancy 0.595197

看到了吧,(64,2)的achieved Occupancy竟然是最低的,尽管他有最多的block(高中做物理题也是这感觉),它达到了硬件对block数量的限制。

第四个(128,2)和第七个(256,2)拥有拥有差不多的achieved Occupancy。我们对这两个再做一个试验,再次增大,将blockDim.y设置为1,这也减少了block的大小:

$ ./sumMatrix 128 1
sumMatrixOnGPU2D <<<(128,16384),(128,1)>>> elapsed 0.032602 sec
$ ./sumMatrix 256 1
sumMatrixOnGPU2D <<<(64,16384), (256,1)>>> elapsed 0.030959 sec

这次配置产生了最佳的性能,特别是,(256,1)要比(128,1)要更好,,再次检查achieved Occupancy,load throughput和load efficiency:

$ nvprof --metrics achieved_occupancy ./sumMatrix 256 1
$ nvprof --metrics gld_throughput ./sumMatrix 256 1
$ nvprof --metrics gld_efficiency ./sumMatrix 256 1

输出:

Achieved Occupancy 0.808622
Global Load Throughput 69.762GB/s
Global Memory Load Efficiency 100.00%

现在可以看出,最佳配置既不是拥有最高achieved Occupancy也不是最高load throughput的。所以不存在唯一metric来优化计算性能,我么需要从众多metric中寻求一个平衡。

总结

  • 在大多数情形下,并不存在唯一的metric可以精确的优化性能。
  • 哪个metric或者event对性能的影响大是由kernel具体的代码决定的。
  • 在众多相关的metric和event中寻求一个平衡。
  • Grid/blcok heuristics(启发) 为调节性能提供了不错的切入点。

你可能感兴趣的:(CUDA学习笔记六)