PDF (English) | Statistics | Forum |
Time Limit: 2 second(s) | Memory Limit: 32 MB |
Given a tree (a connected graph with no cycles), you have to find the farthest nodes in the tree. The edges of the tree are weighted and undirected. That means you have to find two nodes in the tree whose distance is maximum amongst all nodes.
Input starts with an integer T (≤ 10), denoting the number of test cases.
Each case starts with an integer n (2 ≤ n ≤ 30000) denoting the total number of nodes in the tree. The nodes are numbered from 0 to n-1. Each of the next n-1 lines will contain three integers u v w (0 ≤ u, v < n, u ≠ v, 1 ≤ w ≤ 10000) denoting that node u and v are connected by an edge whose weight is w. You can assume that the input will form a valid tree.
For each case, print the case number and the maximum distance.
Sample Input |
Output for Sample Input |
2 4 0 1 20 1 2 30 2 3 50 5 0 2 20 2 1 10 0 3 29 0 4 50 |
Case 1: 100 Case 2: 80 |
Dataset is huge, use faster i/o methods.
/* http://blog.csdn.net/liuke19950717 */ #include<cstdio> #include<queue> #include<cstring> #include<algorithm> using namespace std; const int maxn=30005; int edgenum,head[maxn],sx,ans; int dist[maxn],vis[maxn]; struct node { int to,val,next; }edge[maxn*10]; void init() { edgenum=0; memset(head,-1,sizeof(head)); } void add(int u,int v,int w) { node tp={v,w,head[u]}; edge[edgenum]=tp; head[u]=edgenum++; } void bfs(int st) { memset(dist,0,sizeof(dist)); memset(vis,0,sizeof(vis)); queue<int> q; q.push(st); dist[st]=0;vis[st]=1;//起点 ans=0; while(!q.empty()) { int u=q.front();q.pop(); for(int i=head[u];i!=-1;i=edge[i].next) { int v=edge[i].to; if(!vis[v]) { vis[v]=1; dist[v]=dist[u]+edge[i].val;//不需要更新,直接赋值 if(ans<dist[v]) { ans=dist[v];//这个是最长距离 sx=v;//距离当前点最远的点的编号 } q.push(v); } } } } int main() { int t; scanf("%d",&t); for(int k=1;k<=t;++k) { int n;init(); scanf("%d",&n); for(int i=0;i<n-1;++i) { int a,b,c; scanf("%d%d%d",&a,&b,&c); add(a,b,c);add(b,a,c); } bfs(0);//搜出sx的值,也就是起点的值 bfs(sx);//搜出最远的距离 printf("Case %d: %d\n",k,ans); } return 0; }