- 易 AI - 使用 TensorFlow 2 Keras 实现 AlexNet CNN 架构
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-alexnet-implementation前言网络结构实现SequentialSubclassingDemo小结参考前言上一篇笔者使用如何阅读深度学习论文的方法阅读了AlexNet。为了加深理解,本文带大家使用TensorFlow2Keras实现AlexNetCNN架构。网络结构image从上一篇可以得到Al
- 论文学习记录之Deep-learning seismic full-waveform inversion for realistic structuralmodels
摘星星的屋顶
论文深度学习人工智能
一、ABSTRACT—摘要标题:Deep-learningseismicfull-waveforminversionforrealisticstructuralmodels(用于真实结构模型的深度学习地震全波形反演)作者:BinLiu1,SenlinYang2,YuxiaoRen2,XinjiXu3,PengJiang2,andYangkangChen4(和SeisInvNet有共同作者,应该是同
- 论文学习记录之SeisInvNet(Deep-Learning Inversion of Seismic Data)
摘星星的屋顶
论文人工智能
目录1INTRODUCTION—介绍2RELATEDWORKS—相关作品3METHODOLOGYANDIMPLEMENTATION—方法和执行3.1方法3.2执行4EXPERIMENTS—实验4.1数据集准备4.2实验设置4.3基线模型4.4定向比较4.5定量比较4.6机理研究5CONCLUSION—结论1INTRODUCTION—介绍地震勘探是根据地震波在大地中的传播规律来确定地下地层结构的一种
- 易 AI - 机器学习计算机视觉基础
CatchZeng
原文:http://makeoptim.com/deep-learning/yiai-cv计算机视觉表达黑白图灰度图彩色图操作卷积均值滤波归一化统一量纲加速模型训练梯度下降GPU浮点运算小结参考链接上一篇讲解了机器学习数据集的概念以及如何收集图片数据集。收集到的数据是被训练的对象,那么怎么表示这些数据呢?数据又需要被怎么操作呢?本文为大家讲解计算机视觉基础,帮助大家在后面的课程中更好地理解和训练模
- 【Pytorch】Transposed Convolution
bryant_meng
pytorch人工智能python反卷积逆卷积
文章目录1卷积2反/逆卷积3MaxUnpool/ConvTranspose4encoder-decoder5可视化学习参考来自:详解逆卷积操作–Up-samplingwithTransposedConvolutionPyTorch使用记录https://github.com/naokishibuya/deep-learning/blob/master/python/transposed_convo
- 2-EagleC: A deep-learning framework for detecting a full range of structural variations from bulk...
怎么不是呐
Hi-C技术:检测人类基因组结构变异(SVs)的一种有前景的方法。目前严重缺乏能够使用Hi-C数据进行全范围SV检测的算法,只能以低于最佳的分辨率识别染色体间易位和远程染色体内SVs(>1mb)。本文开发了一个深度学习模型,结合了深度学习和集成学习策略的框架,以高分辨率预测全范围的SVs——EagleC在癌症基因组中认识了许多先前未知的融合事件,也发掘了已知致癌基因的新型调控机制,这些发现为癌症分
- 用数据玩点花样!如何构建skim-gram模型来训练和可视化词向量
机器之心V
php人工智能
本文介绍了如何在TensorFlow中实现skim-gram模型,并用TensorBoard进行可视化。GitHub地址:https://github.com/priya-dwivedi/Deep-Learning/blob/master/word2vec_skipgram/Skip-Grams-Solution.ipynb本教程将展示如何在TensorFlow中实现skim-gram模型,以便为
- Deep-learning
斗战胜佛oh
图卷积网络在药物研发中的应用综述尽管深度学习在很多领域在过去的几年取得了一定的成功,但是在分子信息和药物发现领域成功的应用依然有限。适用于深层架构的结构化数据方面的最新进展为药物研究开辟了新的范例。该篇从四个角度阐述了图神经网络在药物发现和分子信息领域的应用。1)分子属性和活性预测;2)相互作用预测;3)合成预测;4)从头药物设计。最后总结了药物相关问题的代表性应用。讨论将图卷积网络应用于药物发现
- 用BERT进行机器阅读理解
javastart
自然语言
这里可以找到带有代码的Github存储库:https://github.com/edwardcqian/bert_QA。本文将讨论如何设置此项功能.机器(阅读)理解是NLP的领域,我们使用非结构化文本教机器理解和回答问题。https://www.coursera.org/specializations/deep-learning?ranMID=40328&ranEAID=J2RDoRlzkk&ra
- 停车场车位检测思路梳理
杂七杂八的
输入列表图像,在工具台中输出图像defshow_images(self,images,cmap=None):输入的是某一张图片和给图片的name,make_write表示是否需要yyyyafafaffadfsfgf10.fhttps://github.com/priya-dwivedi/Deep-Learning/tree/master/parking_spots_detector/train_d
- AI - Ubuntu 机器学习环境 (TensorFlow GPU, JupyterLab, VSCode)
CatchZeng
原文:https://makeoptim.com/deep-learning/tensorflow-gpu-on-ubuntu介绍所需软件安装前GCCNVIDIApackagerepositoriesNVIDIAmachinelearningNVIDIAGPUdriverCUDAToolKitandcuDNNTensorRTMiniconda虚拟环境安装TensorFlow安装JupyterLab
- deep-learning(1) - 随手记录的知识点
Laniakea_01d0
业界通常认为第一层是隐藏层的第一层AI会遇上工程类问题Padding补零操作,可以保证卷积核在每块区域都进行卷积,迭代次数越多,更有效果,提取特征更好生成器和迭代器,存在的意义,一般我们需要对一个数组进行操作的时候,我们要遍历出来操作,比如一亿个参数,我们不可能一次性全部取出来,一个一个的去取,这就是生成器存在的意义。Dataloader加载数据到内存Next(iter(a))转换成0,1转换成正
- 易 AI - AlexNet 论文深度讲解
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-paper-alexnet论文地址阅读方式ImageNetClassificationwithDeepConvolutionalNeuralNetworks使用深度卷积神经网络的ImageNet分类Abstract摘要1Introduction1简介2TheDataset2数据集3TheArchitecture
- AI - Mac M1 机器学习环境 (TensorFlow, JupyterLab, VSCode)
CatchZeng
原文https://makeoptim.com/deep-learning/mac-m1-tensorflowXcodeCommandLineToolsHomebrewMiniforge下载AppleTensorFlow创建虚拟环境安装必须的包安装特殊版本的pip和其他包安装Apple提供的包(numpy,grpcio,h5py)安装额外的包安装TensorFlow测试JupyterLabVSCo
- 易 AI - 机器学习卷积神经网络(CNN)
CatchZeng
原文:http://makeoptim.com/deep-learning/yiai-cnn卷积神经网络结构输入层隐藏层输出层TensorFlow中定义卷积神经网络模型宏观理解卷积神经网络全连接采样卷积小结上一篇介绍了如何在TensorFlow中加载数据集。从本文开始将以王者荣耀为例,介绍卷积神经网络(CNN)。由于涉及的内容较多,本文主要先介绍以下内容:卷积神经网络结构TensorFlow中定义
- 易 AI - 使用 TensorFlow Object Detection API 训练自定义目标检测模型
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-object-detection前言目标检测位置发展史传统方法(候选区域+手工特征提取+分类器)RegionProposal+CNN(Two-stage)端到端(One-stage)TensorFlowObjectDetectionAPI安装依赖项安装API工程创建数据集图片标注创建TFRecord模型训练下载
- AI - Mac 机器学习环境 (TensorFlow, JupyterLab, VSCode)
CatchZeng
原文:https://makeoptim.com/deep-learning/mac-tensorflowCondaAnacondaMiniconda创建虚拟环境安装tensorflow检查安装JupyterLab启动安装其他依赖JupyterLab运行tensorflow安装VSCodeVSCode运行tensorflow小结延伸阅读在MacM1机器学习环境讲述了如何在M1芯片的Mac搭建机器学
- NLP(新闻文本分类)——数据读取与数据分析
浩波的笔记
NLP机器学习pythonnlp
初始数据importpandasaspddf_train=pd.read_csv('E:/python-project/deep-learning/datawhale/nlp/news-data/train_set.csv/train_set.csv',sep='\t')df_test=pd.read_csv('E:/python-project/deep-learning/datawhale/n
- AI - Apple Silicon Mac M1 原生支持 TensorFlow 2.6 GPU 加速(tensorflow-metal PluggableDevice)
CatchZeng
原文:http://makeoptim.com/deep-learning/tensorflow-metal前言系统要求当前不支持XcodeCommandLineToolsHomebrewMiniforge创建虚拟环境安装Tensorflowdependencies首次安装升级安装安装Tensorflow安装metalplugin安装必须的包测试JupyterLabVSCode延伸阅读参考前言几天
- 易 AI - ResNet 论文深度讲解
CatchZeng
原文:https://makeoptim.com/deep-learning/yiai-paper-resnet论文地址阅读方式DeepResidualLearningforImageRecognition图像识别的深度残差学习Abstract摘要1Introduction1简介2RelatedWork2相关工作3.DeepResidualLearning3.深度残差学习3.1.ResidualL
- Windows安装PyTorch-CPU
Ann剑
安装PyTorchpytorchwindowspython
看了好多大佬的教程,终于给自己老旧电脑成功安装了PyTorch本电脑安装的软件PyTorch=1.12.1anaconda版本为conda4.8.2(anaconda自行安装)开始前以管理员方式运行anacondaprompt一、安装PyTorch一、安装PyTorch(1)创建环境为deep-learning,也可以为PyTorch(就是一个名字)。指定Python版本condacreate-n
- transformer(Bert)的多头注意力对每一个head进行降维的分析
想赚钱的雷大
背景:在用keras的multiattention模块做实验的时候,发现学习参数随着头数的增多而增多,与transformer中的实现不太一致结果:本着想了解透彻的思路去网上搜索了一番,第一篇我就觉得整理的不错,附上链接:http://www.sniper97.cn/index.php/note/deep-learning/note-deep-learning/4002/总结一下:一言蔽之的话,大
- nvidia 3060 + cuda + cudnn + tf
代码&诗
tensorflowpython深度学习
参考:https://eipi10.cn/deep-learning/2019/11/28/centos_cuda_cudnn/1.环境版本:CentOSLinuxrelease7.8.2003(Core)Tensorflow-gpu2.5nvidia3060cuda11.2.2cudnn-11.32.环境检查:lscpi|grep-invidia#要有nvidia设备3.首先安装nvidia-3
- identifier “THCudaCheck“ is undefined 的解决方法
莫说相公痴
MachineLearningPythonPytorch深度学习pytorch人工智能
THCudaCheck在pytorch1.11.0版本被移除了,可以看文档https://www.exxactcorp.com/blog/Deep-Learning/pytorch-1-11-0-now-available解决方法是将THCudaCheck替换成C10_CUDA_CHECK
- 交通事故预测—《Traffic Accident’s Severity Prediction: A Deep-Learning Approach-Based CNN Network》
永恒的记忆2019
科研论文python机器学习人工智能
一、文章信息《TrafficAccident’sSeverityPrediction:ADeep-LearningApproach-BasedCNNNetwork》,2019年Access上的一篇文章。二、摘要基于交通事故特征的权重,提出了基于特征矩阵的灰色图像(FM2GI)算法,将交通事故数据的单一特征关系转换为包含并行组合关系的灰色图像作为模型的输入变量,网络模型是基于CNN。(也就是说这篇文
- 通过 MQTT 检测对象和传输图像
woshicver
pythonopencvvnccvopengl
在本文中,我们将学习如何使用open-cv和YOLO对象检测器每五秒捕获/保存和检测图像中的对象。然后我们将图像转换为字节数组并通过MQTT发布,这将在另一个远程设备上接收并保存为JPG。我们将使用YoloV3算法和一个免费的MQTT代理YoloV3算法:https://viso.ai/deep-learning/yolov3-overview/#:~:text=What's%20Next%3F-
- DNN(Deep-Learning Neural Network)
sherlock31415931
ML神经网络深度学习人工智能tensorflownumpy
DNN(Deep-LearningNeuralNetwork)接下来介绍比较常见的全连接层网络(fully-connectedfeedfowardneruralnetwork)名词解释首先介绍一下神经网络的基本架构,以一个神经元为例输入是一个向量,权重(weights)也是一个矩阵把两个矩阵进行相乘,最后加上偏差(bias),即w1*x1+w2*x2+b神经元里面会有一个激活函数(activati
- AlexNet详解
tt丫
深度学习人工智能深度学习神经网络AlexNet
入门小菜鸟,希望像做笔记记录自己学的东西,也希望能帮助到同样入门的人,更希望大佬们帮忙纠错啦~侵权立删。✨完整代码在我的github上,有需要的朋友可以康康✨GitHub-tt-s-t/Deep-Learning:Storesomeofyourownin-depthlearningcode,whichiscurrentlyintheupdatestage.Thecontentcovers:each
- 论文解读:ProteinBERT: a universal deep-learning model of protein sequence and function
wangpan007
生信论文神经网络python编程深度学习神经网络python
目录1.研究背景2.研究数据2.1预训练的蛋白质数据集2.2蛋白质基准数据集3.研究方法3.1序列和标注编码3.2蛋白质序列和注释的自我监督预训练3.3对蛋白质基准进行监督微调3.4深度学习框架4.结果4.1预训练可以改善蛋白质模型4.2ProteinBERT在不同的蛋白质基准上达到了近乎最先进的结果4.4全局注意力机制的理解5.结论作者单位:耶路撒冷希伯来大学发表期刊:《Bioinformati
- 【U-Net2015】U-Net: Convolutional Networks for Biomedical Image Segmentation mage Segmentation
不会声调的博er
深度学习caffe计算机视觉
U-Net:ConvolutionalNetworksforBiomedicalmageSegmentation生物医学图像语义分割的卷积神经网络arXiv:1505.04597v1[cs.CV]18May2015文章地址:https://arxiv.org/abs/1505.04597代码地址:https://github.com/Jack-Cherish/Deep-Learning/tree/
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro