Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 7360 | Accepted: 2558 |
Description
In a certain course, you take n tests. If you get ai out of bi questions correct on test i, your cumulative average is defined to be
Given your test scores and a positive integer k, determine how high you can make your cumulative average if you are allowed to drop any k of your test scores.
Suppose you take 3 tests with scores of 5/5, 0/1, and 2/6. Without dropping any tests, your cumulative average is . However, if you drop the third test, your cumulative average becomes .
Input
The input test file will contain multiple test cases, each containing exactly three lines. The first line contains two integers, 1 ≤ n ≤ 1000 and 0 ≤ k < n. The second line contains n integers indicating ai for all i. The third line contains n positive integers indicating bi for all i. It is guaranteed that 0 ≤ ai ≤ bi ≤ 1, 000, 000, 000. The end-of-file is marked by a test case with n = k = 0 and should not be processed.
Output
For each test case, write a single line with the highest cumulative average possible after dropping k of the given test scores. The average should be rounded to the nearest integer.
Sample Input
3 1 5 0 2 5 1 6 4 2 1 2 7 9 5 6 7 9 0 0
Sample Output
83 100
#include <stdio.h> #include <math.h> #include <string.h> #include <algorithm> using namespace std; const int maxn=1000+10; int a[maxn],b[maxn],n,k; double t[maxn]; int cmp(double x,double y){ return x>y; } bool C(double x){ //这里的x就是上面分析的L int i; double sum=0; for(i=0;i<n;i++) t[i]=a[i]-x*b[i]; sort(t,t+n,cmp); for(i=0;i<n-k;i++) //策略就是取前n-k组最大的求和,sum表示q(L)的最大值 sum+=t[i]; return sum>0; } int main() { int i,j; while(scanf("%d%d",&n,&k)){ if(n==0 && k==0) break; for(i=0;i<n;i++) scanf("%d",&a[i]); for(i=0;i<n;i++) scanf("%d",&b[i]); double l=0,r=1; for(i=0;i<20;i++){ //注意精度 double m=(l+r)/2; if(C(m)) l=m; else r=m; } printf("%d\n",(int)(l*100+0.5)); } return 0; }