题意:输入n, m,n表示26个大写字母组成的字母表中前n个字母,m表示将输入m对字母的大小关系式,(ch1 < ch2)问根据输入多少个关系式时能惟一确定这n个字母有可能出现的关系,共有3 种情况:
(1)如果出现ch1 < ch2同时又有ch1 > ch2则表示这n个字母是inconsistency。
(2)能确定有惟一这n个的字母的拓扑序。
(3)不能根据输入的m对关系确定这n个字母逻辑大小的关系。
题解:
(1)用d[i][j]表示第字符'A'+ i和字符‘A' + j的关系, ‘A' + i < 'A' + j时,d[i][j] = true,否则为false;
(2)当出现d[i][j] 和 d[j][i]同时为true时,出现矛盾,可以判定inconsistency.
(3)记录d[i][j] = true(0 <= i < n && 0 <= j < n) 的关系式有count个时,当count == n * (n - 1) /2时,可以确定有惟一的拓扑序。
#include <cstring> #include <iostream> using namespace std; int m, n, find, step; int map[30][30],in[30]; char str[5],ans[30]; bool loop() /* 判断是否有环 */ { int i, j, k; for ( k = 0; k < m; k++ ) for ( i = 0; i < m; i++ ) for ( j = 0; j < m; j++ ) if ( map[i][k] && map[k][j] ) map[i][j] = 1; for ( i = 0; i < m; i++ ) if ( map[i][i] ) return true; return false; } int topo () { if ( loop() ) return 3; memset(in,0,sizeof(in)); memset(ans,0,sizeof(ans)); for ( int i = 0; i < m; i++ ) { for ( int j = 0; j < m; j++ ) if ( map[j][i] ) in[i]++; if ( ans[in[i]] == 0 ) ans[in[i]] = i+'A'; else return 2; } ans[m] = '\0'; return 1; } int main() { while ( scanf("%d%d",&m,&n) && m+n ) { find = step = 0; memset(map,0,sizeof(map)); for ( int i = 1; i <= n; i++ ) { scanf("%s",str); map[str[0]-'A'][str[2]-'A'] = 1; if ( ! find ) { int temp = topo(); if ( temp == 3 ) { find = 3; step = i; } else if ( temp == 1 ) { find = 1; step = i; } else if ( i == n ) find = 2; } } if ( find == 1 ) printf("Sorted sequence determined after %d relations: %s.\n", step, ans); else if ( find == 2 ) printf("Sorted sequence cannot be determined.\n"); else if ( find == 3 ) printf("Inconsistency found after %d relations.\n", step); } return 0; }