Hadoop2.2.0使用之初体验

离10月15日Hadoop发布2.2.0这个稳定版本已经过去2个月了,最近终于抽了点时间搭建了一个3节点的集群,体验了一把YARN上如何跑Map/Reduce程序了。

每次搭建Hadoop测试集群都或多或少的碰到一些问题,几乎没有一次是一步到位的了,这次也不例外,也碰到过几个问题,不过Google很快帮忙解决了。


安装使用Hadoop2.2.0务必要先搞清除OS是32位还是64位的,由于Apache社区的版本是使用32位的Linux来编译的,所以如果是使用64位的机器跑Hadoop节点的时候,加载本地库就会存在问题,需要自行下载源代码来编辑Hadoop源码来获取部署包。如果OS是32位的则简单多了,直接使用社区版本即可。对于源代码编辑Hadoop2.2.0的源代,码,需要准备好maven、protoc2.5.0等环境。具体可以参见:hadoop2.2.0 centos 编译安装详解


这次的机器是机房的3台备用机器:

OS:64位的CentOS 6.4

【192.168.1.216】  RAM32G/CPU2*4Core/STAT300G        (NameNode/SecondaryNameNode/DataNode/ResourceManager)

【192.168.1.217】  RAM8G/CPU2*4Core/STAT500G          (DataNode/NodeManager)

【192.168.1.218】  RAM8G/CPU2*4Core/STAT500G          (DataNode/NodeManager)

(1)修改hostname

在3台机器的/etc/hosts文件末尾都加入:

192.168.1.216 lrts216
192.168.1.217 lrts217
192.168.1.218 lrts218

A:修改192.168.1.217 hostname

在192.168.1.216这台机器上修改hostname,以root用户来执行:hostname lrts216

同时修改/etc/sysconfig/network文件:

NETWORKING=yes
HOSTNAME=lrts216

B:修改192.168.1.217 hostname

在192.168.1.217这台机器上修改hostname,以root用户来执行:hostname lrts217

同时修改/etc/sysconfig/network文件:

NETWORKING=yes
HOSTNAME=lrts217

C:修改192.168.1.218 hostname

在192.168.1.218这台机器上修改hostname,以root用户来执行:hostname lrts218

同时修改/etc/sysconfig/network文件:

NETWORKING=yes
HOSTNAME=lrts218

(2)配置SSH无密码登录

在3台机器上创建hadoop用户组,以及hadoop用户,家目录统一为/home/hadoop

以root用户分别在3台机器上执行如下命令:

groupadd hadoop

useradd -g hadoop -d /home/hadoop hadoop

lrts216:

以用户hadoop登录lrts216,在/home/hadoop目录下执行下述命令:

ssh-keygen -t rsa

一路回车下去即可在目录/home/hadoop/.ssh/下建立两个文件 id_rsa.pub和id_rsa。

进入/home/hadoop/.ssh目录,用SCP命令把is_rsa.pub文件复制到lrts217和lrts218上去。

scp id_rsa.pub hadoop@lrts217:/home/hadoop/.ssh/lrts216keys

scp id_rsa.pub hadoop@lrts218:/home/hadoop/.ssh/lrts216keys

当然这里都少不了要输入密码哦

lrts217:

以用户hadoop登录lrts217,在/home/hadoop目录下执行下述命令:

ssh-keygen -t rsa

一路回车下去即可在目录/home/hadoop/.ssh/下建立两个文件 id_rsa.pub和id_rsa。

进入/home/hadoop/.ssh目录,用SCP命令把is_rsa.pub文件复制到lrts216上去。

scp id_rsa.pub hadoop@lrts216:/home/hadoop/.ssh/lrts217keys

当然这里都少不了要输入密码哦

lrts218:

以用户hadoop登录lrts218,在/home/hadoop目录下执行下述命令:

ssh-keygen -t rsa

一路回车下去即可在目录/home/hadoop/.ssh/下建立两个文件 id_rsa.pub和id_rsa。

进入/home/hadoop/.ssh目录,用SCP命令把is_rsa.pub文件复制到lrts216上去。

scp id_rsa.pub hadoop@lrts216:/home/hadoop/.ssh/lrts218keys

当然这里都少不了要输入密码哦

上述方式分别为lrts216lrts217lrts218机器生成了rsa密钥,并且把lrts216的id_rsa.pub复制到lrts217/lrts218上去了,而把lrts217lrts218上的id_rsa.pub复制到lrts216上去了,接下来还需要执行如下步骤才算完事。

lrts216:

以hadoop用户登录lrts216,并且进入目录/home/hadoop/.ssh下,执行如下命令:

cat id_rsa.pub >> authorized_keys
cat lrts217keys >> authorized_keys
cat lrts218keys >> authorized_keys
chmod 644 authorized_keys

lrts217:

以hadoop用户登录lrts217,并且进入目录/home/hadoop/.ssh下,执行如下命令:

cat id_rsa.pub >> authorized_keys
cat lrts216keys >> authorized_keys
chmod 644 authorized_keys

lrts218:

以hadoop用户登录lrts218,并且进入目录/home/hadoop/.ssh下,执行如下命令:

cat id_rsa.pub >> authorized_keys
cat lrts216keys >> authorized_keys
chmod 644 authorized_keys

至此,以用户hadoop登录lrts216后即可以无密钥认证方式访问lrts217lrts218了,同样以用户hadoop登录lrts217lrts218也可以无密钥认证方式访问lrts216

上述的SSH配置非常容易遗漏,遗漏了后续启动Hadoop必然会报各种hostname找不到的错误了,反正是网络错误要优先来排查这个点上配置是否靠谱了。

(3)下载Hadoop2.2.0

从hadoop官网上下载hadoop-2.2.0.tar.gz

进入/home/hadoop/目录,执行:wget http://mirrors.cnnic.cn/apache/hadoop/common/hadoop-2.2.0/hadoop-2.2.0.tar.gz即可下载

使用tar -zxvf hadoop-2.2.0.tar.gz来解压缩,解压缩后的目录为/home/hadoop/hadoop-2.2.0

(4)配置JDK(3台机器相同)

我使用的是jdk-7u45-linux-x64.gz

最终的JAVA_HOME目录为/usr/local/jdk1.7.0_45

以root用户登录3台机器,修改/etc/profile文件,在末尾加入:

export JAVA_HOME=/usr/local/jdk1.7.0_45
export PATH=$PATH:$JAVA_HOME/jre/bin:$JAVA_HOME/bin

执行java -version可以看到如下结果则表示成功!如果这个都搞不定,也别玩什么hadoop了,还早着呢!

[root@lrts216 ~]# java -version
java version "1.7.0_45"
Java(TM) SE Runtime Environment (build 1.7.0_45-b18)
Java HotSpot(TM) 64-Bit Server VM (build 24.45-b08, mixed mode)

其实,到这里为止,所有的配置与之前的版本的Hadoop一模一样的,我又写一次,无非是觉得每次折腾的时候,都或多或少会碰到问题,所以也就把详细的过程都记录下来,权当加强记忆吧了!之前也写过一篇在Redhat AS6上搭建Hadoop集群总结,前半部分基本是一致的。

从下面开始与原来的版本相比就有些不同了。

(5)配置环境变量(3台机器同配置)

分别修改的如下文件/home/hadoop/.bash_profile,在文件末尾加入:

# Hadoop
export HADOOP_PREFIX="/home/hadoop/hadoop-2.2.0"
export PATH=$PATH:$HADOOP_PREFIX/bin
export PATH=$PATH:$HADOOP_PREFIX/sbin
export HADOOP_MAPRED_HOME=${HADOOP_PREFIX}
export HADOOP_COMMON_HOME=${HADOOP_PREFIX}
export HADOOP_HDFS_HOME=${HADOOP_PREFIX}
export YARN_HOME=${HADOOP_PREFIX}
# Native Path
export HADOOP_COMMON_LIB_NATIVE_DIR=${HADOOP_PREFIX}/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_PREFIX/lib/native"


修改如下两个文件(该修改的修改,该添加的添加)

/home/hadoop/hadoop-2.2.0/etc/hadoop/hadoop-env.sh

/home/hadoop/hadoop-2.2.0/etc/hadoop/yarn-env.sh

原来的内容:

# The java implementation to use.
export JAVA_HOME=${JAVA_HOME}
修改为:

# The java implementation to use.
export JAVA_HOME=/usr/local/jdk1.7.0_45

追加如下部分:

export HADOOP_COMMON_LIB_NATIVE_DIR=${HADOOP_PREFIX}/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_PREFIX/lib/native"

(6)配置hadoop那些xml文件(3台机器同配置)

现在提到的配置文件,统一指目录hadoop-2.2.0/etc/hadoop下的同名文件。

core-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
	<property>
		<name>fs.defaultFS</name>
		<value>hdfs://lrts216:9000</value>
	</property>

	<property>
		<name>io.file.buffer.size</name>
		<value>131072</value>
	</property>

	<property>
		<name>hadoop.tmp.dir</name>
		<value>file:/home/hadoop/hadoop-2.2.0/tmp</value>
		<description>Abase for other temporary directories.</description>
	</property>
</configuration>
core-site.xml

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
	<property>
		<name>dfs.namenode.secondary.http-address</name>
		<value>lrts218:50090</value>
	</property>

	<property>
		<name>dfs.namenode.name.dir</name>
		<value>file:/home/hadoop/hadoop-2.2.0/dfs/name</value>
	</property>

	<property>
		<name>dfs.datanode.data.dir</name>
		<value>file:/home/hadoop/hadoop-2.2.0/dfs/data</value>
	</property>

	<property>
		<name>dfs.replication</name>
		<value>2</value>
	</property>
</configuration>
yarn-site.xml
<?xml version="1.0"?>
<configuration>
	<property>
		<name>yarn.nodemanager.aux-services</name>
		<value>mapreduce_shuffle</value>
	</property>

	<property>
		<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
		<value>org.apache.hadoop.mapred.ShuffleHandler</value>
	</property>

	<property>
		<name>yarn.resourcemanager.address</name>
		<value>lrts216:8032</value>
	</property>

	<property>
		<name>yarn.resourcemanager.scheduler.address</name>
		<value>lrts216:8030</value>
	</property>

	<property>
		<name>yarn.resourcemanager.resource-tracker.address</name>
		<value>lrts216:8031</value>
	</property>

	<property>
		<name>yarn.resourcemanager.admin.address</name>
		<value>lrts216:8033</value>
	</property>

	<property>
		<name>yarn.resourcemanager.webapp.address</name>
		<value>lrts216:8088</value>
	</property>
</configuration>
slaves

lrts216
lrts217
lrts218
(7)启动HDFS和YARN

先进入hadoop-2.2.0/bin/目录执行如下命令:./hdfs namenode -format,完成格式化命名节点。

进入hadoop-2.2.0/sbin/目录,执行./start-dfs.ssh和./start-yarm.sh来启动hdfs和yarn。

启动成功则在lrts216节点上执行jps命令查看Java进程,能看到如下进程则表示启动成功了。

[hadoop@lrts216 sbin]$ jps
5859 NodeManager
5741 ResourceManager
4163 NameNode
4467 SecondaryNameNode
31747 Jps
4290 DataNode

进入目录/home/hadoop/hadoop-2.2.0,执行如下命令即可看到hadoop集群的概况

[hadoop@lrts216 hadoop-2.2.0]$ pwd
/home/hadoop/hadoop-2.2.0
[hadoop@lrts216 hadoop-2.2.0]$ bin/hdfs dfsadmin -report
13/12/21 13:48:56 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Configured Capacity: 710826487808 (662.01 GB)
Present Capacity: 604646686720 (563.12 GB)
DFS Remaining: 604646334464 (563.12 GB)
DFS Used: 352256 (344 KB)
DFS Used%: 0.00%
Under replicated blocks: 0
Blocks with corrupt replicas: 0
Missing blocks: 0

-------------------------------------------------
Datanodes available: 2 (3 total, 1 dead)

Live datanodes:
Name: 192.168.1.216:50010 (lrts216)
Hostname: lrts216
Decommission Status : Normal
Configured Capacity: 227023720448 (211.43 GB)
DFS Used: 176128 (172 KB)
Non DFS Used: 79267975168 (73.82 GB)
DFS Remaining: 147755569152 (137.61 GB)
DFS Used%: 0.00%
DFS Remaining%: 65.08%
Last contact: Sat Dec 21 13:48:55 CST 2013


Name: 192.168.1.218:50010 (lrts218)
Hostname: lrts218
Decommission Status : Normal
Configured Capacity: 483802767360 (450.58 GB)
DFS Used: 176128 (172 KB)
Non DFS Used: 26911825920 (25.06 GB)
DFS Remaining: 456890765312 (425.51 GB)
DFS Used%: 0.00%
DFS Remaining%: 94.44%
Last contact: Sat Dec 21 13:48:54 CST 2013


Dead datanodes:
Name: 192.168.1.217:50010 (lrts217)
Hostname: lrts217
Decommission Status : Normal
Configured Capacity: 0 (0 B)
DFS Used: 0 (0 B)
Non DFS Used: 0 (0 B)
DFS Remaining: 0 (0 B)
DFS Used%: 100.00%
DFS Remaining%: 0.00%
Last contact: Sat Dec 21 13:19:59 CST 2013
(8)执行wordcount程序
[hadoop@lrts216 bin]$ hdfs dfs -mkdir -p /lrts/zhangzk
13/12/19 22:20:41 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[hadoop@lrts216 bin]$ hdfs dfs -ls /
13/12/19 22:20:48 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 1 items
drwxr-xr-x   - hadoop supergroup          0 2013-12-19 22:20 /lrts
[hadoop@lrts216 bin]$ hdfs dfs -put hdfs.cmd /lrts/zhangzk/
13/12/19 22:21:16 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
[hadoop@lrts216 bin]$ ll
total 252
-rwxr--r--. 1 hadoop hadoop 78809 Oct  7 14:38 container-executor
-rwxr--r--. 1 hadoop hadoop  4857 Oct  7 14:38 hadoop
-rwxr--r--. 1 hadoop hadoop  7530 Oct  7 14:38 hadoop.cmd
-rwxr--r--. 1 hadoop hadoop  7954 Oct  7 14:38 hdfs
-rwxr--r--. 1 hadoop hadoop  5138 Oct  7 14:38 hdfs.cmd
-rwxr--r--. 1 hadoop hadoop  4989 Oct  7 14:38 mapred
-rwxr--r--. 1 hadoop hadoop  5560 Oct  7 14:38 mapred.cmd
-rwxr--r--. 1 hadoop hadoop  1776 Oct  7 14:38 rcc
-rwxr--r--. 1 hadoop hadoop 95102 Oct  7 14:38 test-container-executor
-rwxr--r--. 1 hadoop hadoop  8548 Oct  7 14:38 yarn
-rwxr--r--. 1 hadoop hadoop  8322 Oct  7 14:38 yarn.cmd
[hadoop@lrts216 bin]$ hadoop jar /home/hadoop/hadoop-2.2.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.2.0.jar wordcount /lrts/zhangzk /lrts/out
13/12/19 22:24:55 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
13/12/19 22:24:56 INFO client.RMProxy: Connecting to ResourceManager at lrts216/192.168.1.216:8032
13/12/19 22:24:57 INFO input.FileInputFormat: Total input paths to process : 1
13/12/19 22:24:57 INFO mapreduce.JobSubmitter: number of splits:1
13/12/19 22:24:57 INFO Configuration.deprecation: user.name is deprecated. Instead, use mapreduce.job.user.name
13/12/19 22:24:57 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
13/12/19 22:24:57 INFO Configuration.deprecation: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
13/12/19 22:24:57 INFO Configuration.deprecation: mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class
13/12/19 22:24:57 INFO Configuration.deprecation: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
13/12/19 22:24:57 INFO Configuration.deprecation: mapred.job.name is deprecated. Instead, use mapreduce.job.name
13/12/19 22:24:57 INFO Configuration.deprecation: mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
13/12/19 22:24:57 INFO Configuration.deprecation: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
13/12/19 22:24:57 INFO Configuration.deprecation: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
13/12/19 22:24:57 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
13/12/19 22:24:57 INFO Configuration.deprecation: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
13/12/19 22:24:57 INFO Configuration.deprecation: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
13/12/19 22:24:57 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1387462237922_0001
13/12/19 22:24:58 INFO impl.YarnClientImpl: Submitted application application_1387462237922_0001 to ResourceManager at lrts216/192.168.1.216:8032
13/12/19 22:24:58 INFO mapreduce.Job: The url to track the job: http://lrts216:8088/proxy/application_1387462237922_0001/
13/12/19 22:24:58 INFO mapreduce.Job: Running job: job_1387462237922_0001
13/12/19 22:25:06 INFO mapreduce.Job: Job job_1387462237922_0001 running in uber mode : false
13/12/19 22:25:06 INFO mapreduce.Job:  map 0% reduce 0%
13/12/19 22:25:11 INFO mapreduce.Job:  map 100% reduce 0%
13/12/19 22:25:17 INFO mapreduce.Job:  map 100% reduce 100%
13/12/19 22:25:17 INFO mapreduce.Job: Job job_1387462237922_0001 completed successfully
13/12/19 22:25:18 INFO mapreduce.Job: Counters: 43
        File System Counters
                FILE: Number of bytes read=4715
                FILE: Number of bytes written=167555
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=5244
                HDFS: Number of bytes written=3660
                HDFS: Number of read operations=6
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters 
                Launched map tasks=1
                Launched reduce tasks=1
                Rack-local map tasks=1
                Total time spent by all maps in occupied slots (ms)=2410
                Total time spent by all reduces in occupied slots (ms)=2941
        Map-Reduce Framework
                Map input records=171
                Map output records=523
                Map output bytes=6735
                Map output materialized bytes=4715
                Input split bytes=106
                Combine input records=523
                Combine output records=264
                Reduce input groups=264
                Reduce shuffle bytes=4715
                Reduce input records=264
                Reduce output records=264
                Spilled Records=528
                Shuffled Maps =1
                Failed Shuffles=0
                Merged Map outputs=1
                GC time elapsed (ms)=35
                CPU time spent (ms)=750
                Physical memory (bytes) snapshot=398831616
                Virtual memory (bytes) snapshot=1765736448
                Total committed heap usage (bytes)=354942976
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters 
                Bytes Read=5138
        File Output Format Counters 
                Bytes Written=3660
[hadoop@lrts216 bin]$ hdfs dfs -ls /lrts/out
13/12/19 22:26:17 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r--   2 hadoop supergroup          0 2013-12-19 22:25 /lrts/out/_SUCCESS
-rw-r--r--   2 hadoop supergroup       3660 2013-12-19 22:25 /lrts/out/part-r-00000
[hadoop@lrts216 bin]$ hdfs dfs -cat /lrts/out/part-r-00000
13/12/19 22:27:30 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
"%1"    2
"%HADOOP_BIN_PATH:~-1%" 1
"--config"      2
"AS     1
"License");     1
"\"     1
%*      2
%1      1
%1,     1

%2      1

安装参考:

http://www.yongbok.net/blog/how-to-install-hadoop-2-2-0-pseudo-distributed-mode/

http://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-common/ClusterSetup.html

由于我使用的OS是centos 64位的,所以其中出了些问题,需要自行编译hadoop。

参考资料如下:

http://blog.csdn.net/w13770269691/article/details/16883663

http://blog.csdn.net/bamuta/article/details/13506843

http://blog.csdn.net/lalaguozhe/article/details/10580727

http://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-common/NativeLibraries.html



你可能感兴趣的:(Hadoop2.2.0使用之初体验)