这个Lab的内容光是说明就有7页之巨,我反复看了很久才看懂一点点,Lab主要完成的是从不同坐标系表示之间变换的方法。
原始的图片,从Camera basis的表示转换成WhiteBoard basis的表示
里面的Problem 3是难点,Problem 4我没有完成,因为还缺少之前的代码,暂时不写。
注意Problem 3中的vector h不能通过print(h)来获得,因为print会对浮点数进行四舍五入,导致答案错误。
#from image_mat_util import * from mat import Mat from vec import Vec from solver import solve from matutil import * ## Task 1 def move2board(v): ''' Input: - v: a vector with domain {'y1','y2','y3'}, the coordinate representation of a point q. Output: - A {'y1','y2','y3'}-vector z, the coordinate representation in whiteboard coordinates of the point p such that the line through the origin and q intersects the whiteboard plane at p. ''' return Vec({'y1','y2','y3'}, {k:v[k]/v['y3'] for k in v.D}) ## Task 2 def make_equations(x1, x2, w1, w2): ''' Input: - x1 & x2: photo coordinates of a point on the board - y1 & y2: whiteboard coordinates of a point on the board Output: - List [u,v] where u*h = 0 and v*h = 0 ''' domain = {(a, b) for a in {'y1', 'y2', 'y3'} for b in {'x1', 'x2', 'x3'}} u = Vec(domain, {('y3','x1'):w1*x1,('y3','x2'):w1*x2,('y3','x3'):w1,('y1','x1'):-1*x1,('y1','x2'):-x2,('y1','x3'):-1}) v = Vec(domain, {('y3','x1'):w2*x1,('y3','x2'):w2*x2,('y3','x3'):w2,('y2','x1'):-1*x1,('y2','x2'):-x2,('y2','x3'):-1}) return [u, v] ## Task 3 x11=358 x21=36 w11=0 w21=0 x12=329 x22=597 w12=0 w22=1 x13=592 x23=157 w13=1 w23=0 x14=580 x24=483 w14=1 w24=1 [u1,v1]=make_equations(x11, x21, w11, w21) [u2,v2]=make_equations(x12, x22, w12, w22) [u3,v3]=make_equations(x13, x23, w13, w23) [u4,v4]=make_equations(x14, x24, w14, w24) w=Vec(u1.D,{('y1','x1'):1}) b=Vec(range(9),{8:1}) L=rowdict2mat([u1,v1,u2,v2,u3,v3,u4,v4,w]) h=solve(L,b) H = Mat(({'y2', 'y3', 'y1'}, {'x1', 'x3', 'x2'}),h.f) ## Task 4 def mat_move2board(Y): ''' Input: - Y: Mat instance, each column of which is a 'y1', 'y2', 'y3' vector giving the whiteboard coordinates of a point q. Output: - Mat instance, each column of which is the corresponding point in the whiteboard plane (the point of intersection with the whiteboard plane of the line through the origin and q). ''' pass