首先简要介绍一下AC自动机:Aho-Corasick automation,该算法在1975年产生于贝尔实验室,是著名的多模匹配算法之一。一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。要搞懂AC自动机,先得有模式树(字典树)Trie和KMP模式匹配算法的基础知识。AC自动机算法分为3步:构造一棵Trie树,构造失败指针和模式匹配过程。
如果你对KMP算法和了解的话,应该知道KMP算法中的next函数(shift函数或者fail函数)是干什么用的。KMP中我们用两个指针i和j分别表示,A[i-j+ 1..i]与B[1..j]完全相等。也就是说,i是不断增加的,随着i的增加j相应地变化,且j满足以A[i]结尾的长度为j的字符串正好匹配B串的前 j个字符,当A[i+1]≠B[j+1],KMP的策略是调整j的位置(减小j值)使得A[i-j+1..i]与B[1..j]保持匹配且新的B[j+1]恰好与A[i+1]匹配,而next函数恰恰记录了这个j应该调整到的位置。同样AC自动机的失败指针具有同样的功能,也就是说当我们的模式串在Tire上进行匹配时,如果与当前节点的关键字不能继续匹配的时候,就应该去当前节点的失败指针所指向的节点继续进行匹配。
看下面这个例子:给定5个单词:say she shr he her,然后给定一个字符串yasherhs。问一共有多少单词在这个字符串中出现过。我们先规定一下AC自动机所需要的一些数据结构,方便接下去的编程。
const int kind = 26; //26个小写字母 const int maxn = 500001; struct node { node *fail; //失败指针 node *next[kind]; //Trie树的next数组 int count; //是否为这个单词的最后一个结点 node() { fail = NULL; count = 0; memset(next,NULL,sizeof(next)); } }; char keyword[51];//输入的单词 char str[1000001];//输入的文章 node *root; //字典树的根节点 queue<node *> q; //在构造fail指针时bfs用的队列
有了这些数据结构之后,就可以开始编程了:
首先,将这5个单词构造成一棵Tire,如图-1所示。
void insert(char *str,node *root) //构造Trie树 { node *p = root; int i=0,index; while(str[i]) { index = str[i]-'a'; if(p->next[index]==NULL) { p->next[index] = new node(); } p = p->next[index]; i++; } p->count++; //输入的这个单词的个数加1 }
在构造完这棵Tire之后,接下去的工作就是构造下失败指针。构造失败指针的过程概括起来就一句话:设这个节点上的字母为C,沿着他父亲的失败指针走,直到走到一个节点,他的儿子中也有字母为C的节点。然后把当前节点的失败指针指向那个字母也为C的儿子。如果一直走到了root都没找到,那就把失败指针指向root。具体操作起来只需要:先把root加入队列(root的失败指针指向自己或者NULL),这以后我们每处理一个点,就把它的所有儿子加入队列,队列为空。
void build_ac_automation(node *root)//构造ac自动机的fail指针 { int i; root->fail = NULL; q.push(root); while(!q.empty()) { node *tem = q.front(); q.pop(); node *p = NULL; for(int i=0;i<kind;i++) { if(tem->next[i]!=NULL) { if(tem==root) tem->next[i]->fail = root; else { p = tem->fail; while(p!=NULL) { if(p->next[i]!=NULL) { tem->next[i]->fail = p->next[i]; break; } p = p->fail; } if(p==NULL) tem->next[i]->fail = root; } q.push(tem->next[i]); } } } }
从代码观察下构造失败指针的流程:对照图-2来看,首先root的fail指针指向NULL,然后root入队,进入循环。第1次循环的时候,我们需要处理2个节点:root->next[‘h’-‘a’](节点h) 和 root->next[‘s’-‘a’](节点s)。把这2个节点的失败指针指向root,并且先后进入队列,失败指针的指向对应图-2中的(1),(2)两条虚线;第2次进入循环后,从队列中先弹出h,接下来p指向h节点的fail指针指向的节点,也就是root;进入第13行的循环后,p=p->fail也就是p=NULL,这时退出循环,并把节点e的fail指针指向root,对应图-2中的(3),然后节点e进入队列;第3次循环时,弹出的第一个节点a的操作与上一步操作的节点e相同,把a的fail指针指向root,对应图-2中的(4),并入队;第4次进入循环时,弹出节点h(图中左边那个),这时操作略有不同。在程序运行到14行时,由于p->next[i]!=NULL(root有h这个儿子节点,图中右边那个),这样便把左边那个h节点的失败指针指向右边那个root的儿子节点h,对应图-2中的(5),然后h入队。以此类推:在循环结束后,所有的失败指针就是图-2中的这种形式。
最后,我们便可以在AC自动机上查找模式串中出现过哪些单词了。匹配过程分两种情况:(1)当前字符匹配,表示从当前节点沿着树边有一条路径可以到达目标字符,此时只需沿该路径走向下一个节点继续匹配即可,目标字符串指针移向下个字符继续匹配;(2)当前字符不匹配,则去当前节点失败指针所指向的字符继续匹配,匹配过程随着指针指向root结束。重复这2个过程中的任意一个,直到模式串走到结尾为止。
int query(node *root) //字符串匹配 { int i=0,cnt=0,index,len = strlen(str); node *p = root; while(str[i]) { index = str[i]-'a'; while(p->next[index]==NULL&&p!=root) p = p->fail; p = p->next[index]; p = (p==NULL)?root:p; node *tem = p; while(tem!=root&&tem->count!=-1) { cnt+=tem->count; tem->count = -1;//防止重新计数 tem = tem->fail; } i++; } return cnt; }
对照图-2,看一下模式匹配这个详细的流程,其中模式串为yasherhs。对于i=0,1。Trie中没有对应的路径,故不做任何操作;i=2,3,4时,指针p走到左下节点e。因为节点e的count信息为1,所以cnt+1,并且讲节点e的count值设置为-1,表示改单词已经出现过了,防止重复计数,最后temp指向e节点的失败指针所指向的节点继续查找,以此类推,最后temp指向root,退出while循环,这个过程中count增加了2。表示找到了2个单词she和he。当i=5时,程序进入第5行,p指向其失败指针的节点,也就是右边那个e节点,随后在第6行指向r节点,r节点的count值为1,从而count+1,循环直到temp指向root为止。最后i=6,7时,找不到任何匹配,匹配过程结束。
到此为止AC自动机算法的详细过程已经全部介绍结束,看一道例题:http://acm.hdu.edu.cn/showproblem.php?pid=2222
如果完全理解了这个算法。这个题目用上面的模板即可解答。