- pytorch实现单机多卡训练
*Major*
pytorch人工智能python
pytorch实现单机多卡训练fromtorch.nn.parallelimportDataParallel#单机多卡的分布式训练(数据并行)模型训练加速'''三构建模型'''model=build_model(CFG.backbone,CFG.num_classes,CFG.device)model.load_state_dict(torch.load("best_epoch.bin"))mod
- 目标检测-YOLOv4
wydxry
深度学习目标检测YOLO目标跟踪
YOLOv4介绍YOLOv4是YOLO系列的第四个版本,继承了YOLOv3的高效性,并通过大量优化和改进,在目标检测任务中实现了更高的精度和速度。相比YOLOv3,YOLOv4在框架设计、特征提取、训练策略等方面进行了全面升级。它在保持实时检测的同时,显著提升了检测性能,尤其在复杂场景中的表现尤为出色。相比YOLOv3的改进与优势改进的Backbone(CSPDarknet-53)YOLOv4使用
- Vue前端框架选型论证
2401_84434086
程序员前端框架vue.js前端
Model:负责保存应用数据,与后端数据进行同步Controller:负责业务逻辑,根据用户行为对Model数据进行修改View:负责视图展示,将model中的数据可视化出来。但是,但是前端MVC也存在一些严重的问题:model和view的数据交互,非常的混乱,而且维护起来非常麻烦。这就是灵活开发带来的后遗症。拿backbone举个例子,backbone将Model的set和on方法暴露出来,方便
- 2011705918
qq_28091803
iOS传感器应用开发最佳实践_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1dDtSP2LNode应用程序构建使用MongoDB和Backbone_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1c04KnNMPhoneGap移动应用开发手册_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1mgssE
- 云计算的PDF
qq2011705918
IT电子书pdf
iOS传感器应用开发最佳实践_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1dDtSP2LNode应用程序构建使用MongoDB和Backbone_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1c04KnNMPhoneGap移动应用开发手册_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1mgssE
- YOLOv9网络框架
小远披荆斩棘
YOLOv8v9v10等实验与论文总结YOLO
#YOLOv9#parametersnc:80#numberofclassesdepth_multiple:1.0#modeldepthmultiplewidth_multiple:1.0#layerchannelmultiple#activation:nn.LeakyReLU(0.1)#activation:nn.ReLU()#anchorsanchors:3#YOLOv9backbonebac
- MIT-BEVFusion系列八--onnx导出1 综述及相机网络导出
端木的AI探索屋
bevfusiononnx量化自动驾驶bevfusion
目录综述export-camera.py加载模型加载数据生成需要导出成onnx的模块Backbone模块VTransform模块生成onnx使用pytorch原生的伪量化计算方法导出camera.backbone.onnx导出camera.vtransform.onnx综述bevfusion的各个部分的实现有着鲜明的特点,并且相互独立,特别是考虑到后续部署的需要,这里将整个网络,分成多个部分,分别
- 挑战杯 YOLOv7 目标检测网络解读
laafeer
python
文章目录0前言1yolov7的整体结构2关键点-backbone关键点-head3训练4使用效果5最后0前言世界变化太快,YOLOv6还没用熟YOLOv7就来了,如果有同学的毕设项目想用上最新的技术,不妨看看学长的这篇文章,学长带大家简单的解读yolov7,目的是对yolov7有个基础的理解。从2015年的YOLOV1,2016年YOLOV2,2018年的YOLOV3,到2020年的YOLOV4、
- Transformer实战-系列教程17:DETR 源码解读4(Joiner类/PositionEmbeddingSine类/位置编码/backbone)
机器学习杨卓越
Transformer实战transformer深度学习人工智能计算机视觉pytorchDETR
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传点我下载源码DETR算法解读DETR源码解读1(项目配置/CocoDetection类)DETR源码解读2(ConvertCocoPolysToMask类)DETR源码解读3(DETR类)DETR源码解读4(Joiner类/PositionEmbedding
- MIT-BEVFusion系列七--量化2_Camera、Fuser、Decoder网络的量化
端木的AI探索屋
自动驾驶算法python人工智能网络
目录Camera量化CameraBackbone(Resnet50)量化替换量化层,增加residual_quantizer,修改bottleneck的前向对Add操作进行量化CameraNeck(GeneralizedLSSFPN)量化将Conv2d模块替换为QuantConv2d模块CameraNeck中添加对拼接操作的量化替换CameraNeck中的ForwardCameraVTransfo
- MIT-BEVFusion系列七--量化1_公共部分和激光雷达网络的量化
端木的AI探索屋
bevfusion自动驾驶算法python人工智能
目录官方readme的Notesptq.py量化模块初始化解析命令行参数加载配置信息创建dataset和dataloader构建模型模型量化Lidarbackbone量化稀疏卷积模块量化量化完的效果加法模块量化本文是Nvidia的英伟达发布的部署MIT-BEVFusion的方案官方readme的Notes这是是官方提到的量化时需要注意的三个方面:1)在模型进行前向时,使用融合BN层可以为模型带来更
- Unet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割深度学习人工智能机器学习
1.介绍之前写了篇二值图像分割的项目,支持多尺度训练,网络采用backbone为vgg的unet网络。缺点就是没法实现多类别的分割,具体可以参考:二值图像分割统一项目本章只对增加的代码进行介绍,其余的参考上述链接博文本章实现的unet网络的多类别分割,也就是分割可以是两个类别,也可以是多个类别。训练过程仍然采用多尺度训练,即网络会随机将图片缩放到设定尺寸的0.5-1.5倍之间文件目录如下:2.实现
- Unet+ResNet 实战分割项目、多尺度训练、多类别分割
听风吹等浪起
图像分割人工智能计算机视觉
1.介绍传统的Unet网络,特征提取的backbone采用的是vgg模型,vgg的相关介绍和实战参考以前的博文:pytorch搭建VGG网络VGG的特征提取能力其实是不弱的,但网络较为臃肿,容易产生梯度消失或者梯度爆炸的问题。而Resnet可以解决这一问题,参考:ResNet训练CIFAR10数据集,并做图片分类本章在之前文章的基础上,只是将Unet的backbone进行替换,将vgg换成了res
- LLM之LangChain(七)| 使用LangChain,LangSmith实现Prompt工程ToT
wshzd
LangChain笔记langchainprompt
如下图所示,LLM仍然是自治代理的backbone,可以通过给LLM增加以下模块来增强LLM功能:PrompterAgentCheckerModuleMemorymoduleToTcontroller当解决具体问题时,这些模块与LLM进行多轮对话。这是基于LLM的自治代理的典型情况,其中动态创建链并按顺序执行,同时多次轮询LLM。下图是LangSmith[1]的界面,从图中可以看到使用的token
- 大模型实践笔记(2)——Clip改进:通过文本检索视频帧
不会写代码!!
人工智能LLMPython学习深度学习大数据
目录超参数设置配置LLM-clip的backbone文本编码抽取视频帧并编码视频帧匹配保存结果帧工程流全是干货超参数设置#超参数设置PARAMS={"clip_model":"openai/clip-vit-base-patch32",#推理模型名称"video_folder":"./video_test",#视频文件夹路径"text_description":"Aphotoofapersonwe
- ODOO--OWL简介
姜振建 15954039008
odoojavascript前端前端框架
1.什么是OWLOWL是Odoo创建的前端开发框架。这是他们在最新版本的Odoo(版本14)中引入的一个框架,以使前端代码更好一些。如果您熟悉其他前端框架,如React、Vue、Angular、Backbone等,那么您将很快了解OWL。它遵循许多相同的模式和想法。如果您不熟悉前端框架的概念,那么最近的框架都围绕着消除过去通常使用javascript完成的琐碎事务性工作的想法展开。我相信您熟悉数百
- YOLOv8算法改进【NO.91】引入RCS-YOLO算法模块
人工智能算法研究院
首发创新改进方法YOLO算法改进系列YOLO算法transformer
前言YOLO算法改进系列出到这,很多朋友问改进如何选择是最佳的,下面我就根据个人多年的写作发文章以及指导发文章的经验来看,按照优先顺序进行排序讲解YOLO算法改进方法的顺序选择。具体有需求的同学可以私信我沟通:第一,创新主干特征提取网络,将整个Backbone改进为其他的网络,比如这篇文章中的整个方法,直接将Backbone替换掉,理由是这种改进如果有效果,那么改进点就很值得写,不算是堆积木那种,
- 深度学习知识点汇总-目标检测(1)
深度学习模型优化
8.1R-FCNR-FCN属于two-stage的目标检测算法。backbone部分RPN,这里使用ResNet。head部分R-FCN,使用全连接网络。其中ResNet-101+R-FCN的方法在PASCALVOC2007测试数据集的mmAP达到83.6%。图1人脸检测R-FCN的核心思想得到目标多个特征。假设我们只有一个特征图用来检测右眼。那么我们可以使用它定位人脸吗?应该可以。因为右眼应该在
- YOLOv8 : 网络结构
赛先生.AI
YOLOv8YOLO计算机视觉目标检测
一.YOLOv8网络结构1.BackboneYOLOv8的Backbone同样参考了CSPDarkNet-53网络,我们可以称之为CSPDarkNet结构吧,与YOLOv5不同的是,YOLOv8使用C2f(CSPLayer_2Conv)代替了C3模块(如果你比较熟悉YOLOv5的网络结构,那YOLOv8的网络结构理解起来就easy了)。如图1所示为YOLOv8网络结构图(引用自MMYOLO),对比
- 点云transformer算法: FlatFormer 论文阅读笔记
zhaoyqcsdn
深度学习transformer算法论文阅读
代码:https://github.com/mit-han-lab/flatformer论文:https://arxiv.org/abs/2301.08739[FlatFormer.pdf]Flatformer是对点云检测中的backbone3d部分的改进工作,主要在探究怎么高效的对点云应用transformer具体的工作如下:一个缩写:**PCTs即pointcloudtransformers*
- 最新模型VMamba:颠覆视觉Transformer,下一代主流Backbone?
深蓝学院
计算机视觉CNN
论文标题:VMamba:VisualStateSpaceModel论文作者:YueLiu,YunjieTian,YuzhongZhao,HongtianYu,LingxiXie,YaoweiWang,QixiangYe,YunfanLiu1.摘要卷积神经网络(CNN)与视觉Transformer(ViT)是目前最流行的两种视觉表征基础模型。CNN在线性复杂度下,具有惊人的可扩展性。ViTs在性能方
- Transformer实战-系列教程7:SwinTransformer 算法原理 1
机器学习杨卓越
Transformer实战人工智能深度学习Transformer计算机视觉图像分割swinTransformer
Transformer实战-系列教程总目录有任何问题欢迎在下面留言本篇文章的代码运行界面均在Pycharm中进行本篇文章配套的代码资源已经上传1、SwinTransformerSwinTransformer可以看作为一个backbone用来做分类、检测、分割都是非常好的也可以直接套用在下游任务中不仅源码公开了,预训练模型也公开了预训练模型提供大中小三个版本图像中的像素点太多了,如果需要更多的特征就
- 【DeepLearning-10】yolo.py文件关键代码parse_model(d, ch)函数
风筝超冷
YOLO
这段代码功能是根据提供的配置字典(d)和输入通道列表(ch)来解析并构建一个YOLOv5模型。函数的核心工作是遍历模型的每一层,并根据配置创建相应的神经网络层。我们可以在函数中为新增模块配置构造参数设置。函数中fori,(f,n,m,args)inenumerate(d['backbone']+d['head']):#from,number,module,args这一部分对应yolo.yaml文件
- YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读
Prime's Blog
深度学习深度学习训练营YOLO
YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读一、前言二、我的环境三、yolov5s.yaml源文件内容四、Parameters五、anchors配置六、backbone七、head八、总结OLOv5-第Y2周:训练自己的数据集)YOLOv5白皮书-第Y3周:yolov5s.yaml文件解读一、前言本文为365天深度学习
- 目标检测任务的调研与概述
Alexa2077
目标检测目标跟踪人工智能
目标检测任务的调研与概述0FQA1目标检测任务基本知识:1.1什么是目标检测?1.2目标检测的损失函数都有那些?1.2.1类别损失:1.2.2位置损失:1.3目标检测的评价指标都有那些?1.4目标检测有那些常见的数据集?2目标检测的进阶知识:2.1经典的backbone:2.2目标检测器-传统的检测方法2.3目标检测器-两阶段的检测方法:2.3.1R-CNN开山之作2.3.2SPP-Net2.3.
- 【计算机视觉 | 目标检测】DETR风格的目标检测框架解读
旅途中的宽~
目标检测经典论文导读计算机视觉开放域目标检测计算机视觉目标检测深度学习DETR
文章目录一、前言二、理解2.1DETR的理解2.2DETR的细致理解2.2.1Backbone2.2.2Transformerencoder2.2.3Transformerdecoder2.2.4Predictionfeed-forwardnetworks(FFNs)2.2.5Auxiliarydecodinglosses2.3更具体的结构2.4编码器的原理和作用2.5解码器的原理和作用三、注意力
- CS455 Computer Communications and Networking
zhuyu0206girl
网络
Answerthefollowingquestions[100pt]1.[18pt]Thefollowingfigureshows7interconnectedASes:A,B,C,V,W,XandY.ASA,BandCareprovidednetworks(e.g.,backboneASes)andV,W,XandYaretheircustomernetworks(e.g.,accessnetw
- 简单了解YOLOv8
望外追晚
YOLO
简单介绍YOLOv8这里主要关注模型的backbone和后处理的过程,并通过对比YOLOv5的架构来更深入的了解YOLOv8。模型框架YOLOv5中的C3替换为更精简的C2f,即增加了更多的跳跃连接和split操作;Backbone中C2f的block数从3-6-9-3改成了3-6-6-3;耦合头变成了解耦头,分类和回归分为两个分支分别进行;数据前处理1、letterbox缩放:yolov8的输入
- 《RT-DETR魔术师》专栏介绍 & CSDN独家改进创新实战 & 专栏目录
AI小怪兽
RT-DETR魔术师人工智能计算机视觉算法pytorch开发语言python深度学习
RT-DETR魔术师专栏介绍:https://blog.csdn.net/m0_63774211/category_12497375.html✨✨✨魔改创新RT-DETR引入前沿顶会创新(CVPR2023,ICCV2023等),助力RT-DETR基于ultralytics优化,与YOLO完美结合重点:通过本专栏的阅读,后续你也可以自己魔改网络,在网络不同位置(Backbone、head、detec
- 《YOLO小目标检测》专栏介绍 & CSDN独家改进创新实战&专栏目录
AI小怪兽
YOLO小目标检测目标跟踪算法人工智能目标检测YOLO深度学习计算机视觉
Yolo小目标检测,独家首发创新(原创),适用于Yolov5、Yolov7、Yolov8等各个Yolo系列,专栏文章提供每一步步骤和源码,带你轻松实现小目标检测涨点重点:通过本专栏的阅读,后续你可以结合自己的小目标检测数据集,在网络不同位置(Backbone、head、detect、loss等)进行魔改,实现小目标涨点和创新!!!专栏介绍:✨✨✨解决小目标检测难点并提升小目标检测性能;小目标、遮挡
- Java 并发包之线程池和原子计数
lijingyao8206
Java计数ThreadPool并发包java线程池
对于大数据量关联的业务处理逻辑,比较直接的想法就是用JDK提供的并发包去解决多线程情况下的业务数据处理。线程池可以提供很好的管理线程的方式,并且可以提高线程利用率,并发包中的原子计数在多线程的情况下可以让我们避免去写一些同步代码。
这里就先把jdk并发包中的线程池处理器ThreadPoolExecutor 以原子计数类AomicInteger 和倒数计时锁C
- java编程思想 抽象类和接口
百合不是茶
java抽象类接口
接口c++对接口和内部类只有简介的支持,但在java中有队这些类的直接支持
1 ,抽象类 : 如果一个类包含一个或多个抽象方法,该类必须限定为抽象类(否者编译器报错)
抽象方法 : 在方法中仅有声明而没有方法体
package com.wj.Interface;
- [房地产与大数据]房地产数据挖掘系统
comsci
数据挖掘
随着一个关键核心技术的突破,我们已经是独立自主的开发某些先进模块,但是要完全实现,还需要一定的时间...
所以,除了代码工作以外,我们还需要关心一下非技术领域的事件..比如说房地产
&nb
- 数组队列总结
沐刃青蛟
数组队列
数组队列是一种大小可以改变,类型没有定死的类似数组的工具。不过与数组相比,它更具有灵活性。因为它不但不用担心越界问题,而且因为泛型(类似c++中模板的东西)的存在而支持各种类型。
以下是数组队列的功能实现代码:
import List.Student;
public class
- Oracle存储过程无法编译的解决方法
IT独行者
oracle存储过程
今天同事修改Oracle存储过程又导致2个过程无法被编译,流程规范上的东西,Dave 这里不多说,看看怎么解决问题。
1. 查看无效对象
XEZF@xezf(qs-xezf-db1)> select object_name,object_type,status from all_objects where status='IN
- 重装系统之后oracle恢复
文强chu
oracle
前几天正在使用电脑,没有暂停oracle的各种服务。
突然win8.1系统奔溃,无法修复,开机时系统 提示正在搜集错误信息,然后再开机,再提示的无限循环中。
无耐我拿出系统u盘 准备重装系统,没想到竟然无法从u盘引导成功。
晚上到外面早了一家修电脑店,让人家给装了个系统,并且那哥们在我没反应过来的时候,
直接把我的c盘给格式化了 并且清理了注册表,再装系统。
然后的结果就是我的oracl
- python学习二( 一些基础语法)
小桔子
pthon基础语法
紧接着把!昨天没看继续看django 官方教程,学了下python的基本语法 与c类语言还是有些小差别:
1.ptyhon的源文件以UTF-8编码格式
2.
/ 除 结果浮点型
// 除 结果整形
% 除 取余数
* 乘
** 乘方 eg 5**2 结果是5的2次方25
_&
- svn 常用命令
aichenglong
SVN版本回退
1 svn回退版本
1)在window中选择log,根据想要回退的内容,选择revert this version或revert chanages from this version
两者的区别:
revert this version:表示回退到当前版本(该版本后的版本全部作废)
revert chanages from this versio
- 某小公司面试归来
alafqq
面试
先填单子,还要写笔试题,我以时间为急,拒绝了它。。时间宝贵。
老拿这些对付毕业生的东东来吓唬我。。
面试官很刁难,问了几个问题,记录下;
1,包的范围。。。public,private,protect. --悲剧了
2,hashcode方法和equals方法的区别。谁覆盖谁.结果,他说我说反了。
3,最恶心的一道题,抽象类继承抽象类吗?(察,一般它都是被继承的啊)
4,stru
- 动态数组的存储速度比较 集合框架
百合不是茶
集合框架
集合框架:
自定义数据结构(增删改查等)
package 数组;
/**
* 创建动态数组
* @author 百合
*
*/
public class ArrayDemo{
//定义一个数组来存放数据
String[] src = new String[0];
/**
* 增加元素加入容器
* @param s要加入容器
- 用JS实现一个JS对象,对象里有两个属性一个方法
bijian1013
js对象
<html>
<head>
</head>
<body>
用js代码实现一个js对象,对象里有两个属性,一个方法
</body>
<script>
var obj={a:'1234567',b:'bbbbbbbbbb',c:function(x){
- 探索JUnit4扩展:使用Rule
bijian1013
java单元测试JUnitRule
在上一篇文章中,讨论了使用Runner扩展JUnit4的方式,即直接修改Test Runner的实现(BlockJUnit4ClassRunner)。但这种方法显然不便于灵活地添加或删除扩展功能。下面将使用JUnit4.7才开始引入的扩展方式——Rule来实现相同的扩展功能。
1. Rule
&n
- [Gson一]非泛型POJO对象的反序列化
bit1129
POJO
当要将JSON数据串反序列化自身为非泛型的POJO时,使用Gson.fromJson(String, Class)方法。自身为非泛型的POJO的包括两种:
1. POJO对象不包含任何泛型的字段
2. POJO对象包含泛型字段,例如泛型集合或者泛型类
Data类 a.不是泛型类, b.Data中的集合List和Map都是泛型的 c.Data中不包含其它的POJO
 
- 【Kakfa五】Kafka Producer和Consumer基本使用
bit1129
kafka
0.Kafka服务器的配置
一个Broker,
一个Topic
Topic中只有一个Partition() 1. Producer:
package kafka.examples.producers;
import kafka.producer.KeyedMessage;
import kafka.javaapi.producer.Producer;
impor
- lsyncd实时同步搭建指南——取代rsync+inotify
ronin47
1. 几大实时同步工具比较 1.1 inotify + rsync
最近一直在寻求生产服务服务器上的同步替代方案,原先使用的是 inotify + rsync,但随着文件数量的增大到100W+,目录下的文件列表就达20M,在网络状况不佳或者限速的情况下,变更的文件可能10来个才几M,却因此要发送的文件列表就达20M,严重减低的带宽的使用效率以及同步效率;更为要紧的是,加入inotify
- java-9. 判断整数序列是不是二元查找树的后序遍历结果
bylijinnan
java
public class IsBinTreePostTraverse{
static boolean isBSTPostOrder(int[] a){
if(a==null){
return false;
}
/*1.只有一个结点时,肯定是查找树
*2.只有两个结点时,肯定是查找树。例如{5,6}对应的BST是 6 {6,5}对应的BST是
- MySQL的sum函数返回的类型
bylijinnan
javaspringsqlmysqljdbc
今天项目切换数据库时,出错
访问数据库的代码大概是这样:
String sql = "select sum(number) as sumNumberOfOneDay from tableName";
List<Map> rows = getJdbcTemplate().queryForList(sql);
for (Map row : rows
- java设计模式之单例模式
chicony
java设计模式
在阎宏博士的《JAVA与模式》一书中开头是这样描述单例模式的:
作为对象的创建模式,单例模式确保某一个类只有一个实例,而且自行实例化并向整个系统提供这个实例。这个类称为单例类。 单例模式的结构
单例模式的特点:
单例类只能有一个实例。
单例类必须自己创建自己的唯一实例。
单例类必须给所有其他对象提供这一实例。
饿汉式单例类
publ
- javascript取当月最后一天
ctrain
JavaScript
<!--javascript取当月最后一天-->
<script language=javascript>
var current = new Date();
var year = current.getYear();
var month = current.getMonth();
showMonthLastDay(year, mont
- linux tune2fs命令详解
daizj
linuxtune2fs查看系统文件块信息
一.简介:
tune2fs是调整和查看ext2/ext3文件系统的文件系统参数,Windows下面如果出现意外断电死机情况,下次开机一般都会出现系统自检。Linux系统下面也有文件系统自检,而且是可以通过tune2fs命令,自行定义自检周期及方式。
二.用法:
Usage: tune2fs [-c max_mounts_count] [-e errors_behavior] [-g grou
- 做有中国特色的程序员
dcj3sjt126com
程序员
从出版业说起 网络作品排到靠前的,都不会太难看,一般人不爱看某部作品也是因为不喜欢这个类型,而此人也不会全不喜欢这些网络作品。究其原因,是因为网络作品都是让人先白看的,看的好了才出了头。而纸质作品就不一定了,排行榜靠前的,有好作品,也有垃圾。 许多大牛都是写了博客,后来出了书。这些书也都不次,可能有人让为不好,是因为技术书不像小说,小说在读故事,技术书是在学知识或温习知识,有
- Android:TextView属性大全
dcj3sjt126com
textview
android:autoLink 设置是否当文本为URL链接/email/电话号码/map时,文本显示为可点击的链接。可选值(none/web/email/phone/map/all) android:autoText 如果设置,将自动执行输入值的拼写纠正。此处无效果,在显示输入法并输
- tomcat虚拟目录安装及其配置
eksliang
tomcat配置说明tomca部署web应用tomcat虚拟目录安装
转载请出自出处:http://eksliang.iteye.com/blog/2097184
1.-------------------------------------------tomcat 目录结构
config:存放tomcat的配置文件
temp :存放tomcat跑起来后存放临时文件用的
work : 当第一次访问应用中的jsp
- 浅谈:APP有哪些常被黑客利用的安全漏洞
gg163
APP
首先,说到APP的安全漏洞,身为程序猿的大家应该不陌生;如果抛开安卓自身开源的问题的话,其主要产生的原因就是开发过程中疏忽或者代码不严谨引起的。但这些责任也不能怪在程序猿头上,有时会因为BOSS时间催得紧等很多可观原因。由国内移动应用安全检测团队爱内测(ineice.com)的CTO给我们浅谈关于Android 系统的开源设计以及生态环境。
1. 应用反编译漏洞:APK 包非常容易被反编译成可读
- C#根据网址生成静态页面
hvt
Web.netC#asp.nethovertree
HoverTree开源项目中HoverTreeWeb.HVTPanel的Index.aspx文件是后台管理的首页。包含生成留言板首页,以及显示用户名,退出等功能。根据网址生成页面的方法:
bool CreateHtmlFile(string url, string path)
{
//http://keleyi.com/a/bjae/3d10wfax.htm
stri
- SVG 教程 (一)
天梯梦
svg
SVG 简介
SVG 是使用 XML 来描述二维图形和绘图程序的语言。 学习之前应具备的基础知识:
继续学习之前,你应该对以下内容有基本的了解:
HTML
XML 基础
如果希望首先学习这些内容,请在本站的首页选择相应的教程。 什么是SVG?
SVG 指可伸缩矢量图形 (Scalable Vector Graphics)
SVG 用来定义用于网络的基于矢量
- 一个简单的java栈
luyulong
java数据结构栈
public class MyStack {
private long[] arr;
private int top;
public MyStack() {
arr = new long[10];
top = -1;
}
public MyStack(int maxsize) {
arr = new long[maxsize];
top
- 基础数据结构和算法八:Binary search
sunwinner
AlgorithmBinary search
Binary search needs an ordered array so that it can use array indexing to dramatically reduce the number of compares required for each search, using the classic and venerable binary search algori
- 12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
刘星宇
c面试
12个C语言面试题,涉及指针、进程、运算、结构体、函数、内存,看看你能做出几个!
1.gets()函数
问:请找出下面代码里的问题:
#include<stdio.h>
int main(void)
{
char buff[10];
memset(buff,0,sizeof(buff));
- ITeye 7月技术图书有奖试读获奖名单公布
ITeye管理员
活动ITeye试读
ITeye携手人民邮电出版社图灵教育共同举办的7月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。
7月试读活动回顾:
http://webmaster.iteye.com/blog/2092746
本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《Java性能优化权威指南》