UVA - 11235 - Frequent values (RMQ)

UVA - 11235

Frequent values
Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu

Submit Status

Description

2007/2008 ACM International Collegiate Programming Contest 
University of Ulm Local Contest

Problem F: Frequent values

You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.

Input Specification

The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the query.

The last test case is followed by a line containing a single 0.

Output Specification

For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.

Sample Input

10 3
-1 -1 1 1 1 1 3 10 10 10
2 3
1 10
5 10
0

Sample Output

1
4
3
A naive algorithm may not run in time!

Source

Root :: Competitive Programming: Increasing the Lower Bound of Programming Contests (Steven & Felix Halim) :: Chapter 2. Data Structures and Libraries :: Data Structures With Our-Own Libraries ::  Segment Tree
Root :: Competitive Programming 3: The New Lower Bound of Programming Contests (Steven & Felix Halim) :: Data Structures and Libraries :: Data Structures with Our-Own Libraries ::  Tree-related Data Structures
Root :: AOAPC I: Beginning Algorithm Contests -- Training Guide (Rujia Liu) :: Chapter 3. Data Structures :: Maintaining Interval Data ::  Examples
Root :: Competitive Programming 2: This increases the lower bound of Programming Contests. Again (Steven & Felix Halim) :: Data Structures and Libraries :: Data Structures with Our-Own Libraries ::  Tree-related Data Structures

Submit Status






思路:搞了我半天才搞出来,也是够啦,最后才发现是数组下标从一开始,我这代码凑合着用吧,因为是非降序的,所以进行游程编码(RLE),再算出区间内的最大值就好了



AC代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;

const int maxn = 100005;
int a[maxn];
int value[maxn], coun[maxn];
int num[maxn], le[maxn], ri[maxn];
int d[maxn][400];
int maxnum;//最大编号

void RMQ_init() {
	for(int i = 0; i < maxnum+1; i++) d[i][0] = coun[i];
	for(int j = 1; (1 << j) <= maxnum+1; j++)
		for(int i = 0; i + (1<<j) - 1 < maxnum+1; i++)
			d[i][j] = max(d[i][j-1], d[i + (1 << (j-1))][j-1]);
}

int RMQ(int l, int r) {
	int k = 0;
	while((1<<(k+1)) <= r - l + 1) k++;
	return max(d[l][k], d[r-(1<<k) +1][k]);
}

int main() {
	int n, q;
	while(scanf("%d", &n) && n!=0) {
		scanf("%d", &q);
		for(int i = 0; i < n; i++) 
			scanf("%d", &a[i]);
		
		maxnum = 0;
		int cnt = 1;//当前出现次数 
		value[0] = a[0], coun[0] = cnt, num[0] = 0, le[0] = 0, ri[0] = 0;
		for(int i = 1; i < n; i++) {
			if(a[i] != a[i-1]) {
				ri[maxnum] = i - 1;
				cnt = 1; maxnum++;
				le[maxnum] = i; ri[maxnum] = i;
				num[i] = maxnum;
				value[maxnum] = a[i];
				coun[maxnum] = cnt;
			} 
			else {
				cnt++;
				coun[maxnum] = cnt;
				num[i] = maxnum;
				ri[maxnum] = i;
			}
		} 
		
		RMQ_init();
			
		for(int i = 0; i < q; i++) {
			int l, r;
			scanf("%d %d", &l, &r);
			l--; r--;
			//printf("%d %d %d\n", ri[num[l]]-l+1, r-le[num[r]]+1, RMQ(num[l]+1, num[r]-1));
			if(num[l] == num[r]) printf("%d\n", r - l + 1);
			else if(num[r] - num[l] == 1) printf("%d\n", max(ri[num[l]]-l+1, r-le[num[r]]+1));
			else printf("%d\n", max(max(ri[num[l]]-l+1, r-le[num[r]]+1), RMQ(num[l]+1, num[r]-1)));
		}
	}
	return 0;
} 














你可能感兴趣的:(数据结构,编码,ACM,uva)