UVA - 11235
Time Limit: 3000MS | Memory Limit: Unknown | 64bit IO Format: %lld & %llu |
Description
You are given a sequence of n integers a1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indices i and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integers ai , ... , aj.
The input consists of several test cases. Each test case starts with a line containing two integers n and q (1 ≤ n, q ≤ 100000). The next line contains n integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for each i ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The following q lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the query.
The last test case is followed by a line containing a single 0.
For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.
10 3 -1 -1 1 1 1 1 3 10 10 10 2 3 1 10 5 10 0
1 4 3A naive algorithm may not run in time!
Source
思路:搞了我半天才搞出来,也是够啦,最后才发现是数组下标从一开始,我这代码凑合着用吧,因为是非降序的,所以进行游程编码(RLE),再算出区间内的最大值就好了
AC代码:
#include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn = 100005; int a[maxn]; int value[maxn], coun[maxn]; int num[maxn], le[maxn], ri[maxn]; int d[maxn][400]; int maxnum;//最大编号 void RMQ_init() { for(int i = 0; i < maxnum+1; i++) d[i][0] = coun[i]; for(int j = 1; (1 << j) <= maxnum+1; j++) for(int i = 0; i + (1<<j) - 1 < maxnum+1; i++) d[i][j] = max(d[i][j-1], d[i + (1 << (j-1))][j-1]); } int RMQ(int l, int r) { int k = 0; while((1<<(k+1)) <= r - l + 1) k++; return max(d[l][k], d[r-(1<<k) +1][k]); } int main() { int n, q; while(scanf("%d", &n) && n!=0) { scanf("%d", &q); for(int i = 0; i < n; i++) scanf("%d", &a[i]); maxnum = 0; int cnt = 1;//当前出现次数 value[0] = a[0], coun[0] = cnt, num[0] = 0, le[0] = 0, ri[0] = 0; for(int i = 1; i < n; i++) { if(a[i] != a[i-1]) { ri[maxnum] = i - 1; cnt = 1; maxnum++; le[maxnum] = i; ri[maxnum] = i; num[i] = maxnum; value[maxnum] = a[i]; coun[maxnum] = cnt; } else { cnt++; coun[maxnum] = cnt; num[i] = maxnum; ri[maxnum] = i; } } RMQ_init(); for(int i = 0; i < q; i++) { int l, r; scanf("%d %d", &l, &r); l--; r--; //printf("%d %d %d\n", ri[num[l]]-l+1, r-le[num[r]]+1, RMQ(num[l]+1, num[r]-1)); if(num[l] == num[r]) printf("%d\n", r - l + 1); else if(num[r] - num[l] == 1) printf("%d\n", max(ri[num[l]]-l+1, r-le[num[r]]+1)); else printf("%d\n", max(max(ri[num[l]]-l+1, r-le[num[r]]+1), RMQ(num[l]+1, num[r]-1))); } } return 0; }