原理指导:我们通过vmalloc在内存中开辟一部分空间,作为一个虚拟的磁盘,然后我们以块设备的方式来访问这片内存,例如这个sbull模型。
sbull(Simple Block Utility for Loading Localities),该驱动程序实现了一个使用系统内存的块设备,从本质上讲,属于一种 RAM 磁盘驱动程序。字符设备的IO操作则是直接不绕弯的,块设备的IO操作会配对和整合。驱动的任务是处理请求,对于这些请求的排队和整合的工作有IO调度算法处理。所以块设备的核心工作就是:请求处理函数或者是制造请求。Block_devices_operations结构体中没有读写一类的成员函数,而只是包含打开、释放和IO控制等函数。
块设备的流程:
(1)先把模块模型搭建好
MODULE_LICENSE("Dual BSD/GPL");
static struct block_device_operations sbull_ops = {
.owner = THIS_MODULE,
.open = sbull_open,
.release = sbull_release,
.media_changed = sbull_media_changed,
.revalidate_disk = sbull_revalidate,
.ioctl = sbull_ioctl,
.getgeo = sbull_getgeo,
};
module_init(sbull_init);
module_exit(sbull_exit);
(2)定义一个我们用内存虚拟出来的块设备sbull_dev
struct sbull_dev {
int size; /* Device size in sectors */
u8 *data; /* The data array */
short users; /* How many users */
short media_change; /* Flag a media change? */
spinlock_t lock; /* For mutual exclusion */
struct request_queue *queue; /* The device request queue */
struct gendisk *gd; /* The gendisk structure */
struct timer_list timer; /* For simulated media changes */
};
这个设备结构体是我们工作的核心,也许你不知道需要哪些成员,不要紧,还是那句话,编写驱动的时候,需要设备表现出那些性质和功能,相应的添加上就OK了。
(3)设备的初始化
sbull_init( ){
一、sbull_major = register_blkdev(sbull_major, "sbull");
二、Static struct sbull_dev *Devices = kmalloc(ndevices*sizeof (struct sbull_dev), GFP_KERNEL);//在这里可以对Kmalloc的结果判断下,然后进一步处理...
三、setup_device()跳到我们设备注册函数中去
}//初始化函数结束
(4)开始注册我们的这个设备
setup_device( ){ //安装(注册)一个设备前,一定要保证它被初始化了
这些成员都得出初始化好:
一、 int size; /* Device size in sectors */
u8 *data; /* The data array */
short users; /* How many users */
spinlock_t lock; /* For mutual exclusion */
struct request_queue *queue; /* The device request queue */
struct gendisk *gd; /* The gendisk structure */
二、add_disk(dev->gd);//这个重要的注册函数 }//函数结束
(5)扇区大小、data数组、user、锁lock的初始化:
一、dev->size = nsectors*hardsect_size;
dev->data = vmalloc(dev->size);
spin_lock_init(&dev->lock);
二、//dev->queue = blk_alloc_queue(GFP_KERNEL); //RM_NOQUEUE
//dev->queue = blk_init_queue(sbull_full_request, &dev->lock); //RM_FULL
dev->queue = blk_init_queue(sbull_request, &dev->lock); //RM_SIMPLE
(6)告知内核硬件扇区尺寸、和timer模拟的初始化
blk_queue_logical_block_size(dev->queue, hardsect_size);
init_timer(&dev->timer);
dev->timer.data = (unsigned long) dev;
dev->timer.function = sbull_invalidate;gendisk初始化
一、初始化gendisk:
dev->gd = alloc_disk(SBULL_MINORS);
二、 初始化gendisk的成员
dev->gd->major = sbull_major;
dev->gd->first_minor = which*SBULL_MINORS;
dev->gd->fops = &sbull_ops;
dev->gd->queue = dev->queue;
dev->gd->private_data = dev;
(7)设置gendisk容量为xxx_size个扇区大小
set_capacity(dev->gd , nsectors*(hardsect_size / KERNEL_SECTOR_SIZE));
(8)剩下的就是为devices_operation结构体里声明的那些接口进行实现:
.open = sbull_open,
.release = sbull_release,
.media_changed = sbull_media_changed,
.revalidate_disk = sbull_revalidate,
.ioctl = sbull_ioctl,
.getgeo = sbull_getgeo,
一、sbull_open(struct block_device *bdev,fmode_t mode )
二、sbull_release(struct gendisk *bd_disk, fmode_t mode)
三、sbull_media_changed(struct gendisk *gd)
四、sbull_revalidate(struct gendisk *gd)
五、sbull_invalidate(unsigned long ldev)
六、sbull_ioctl (struct block_device *bdev, fmode_t mode,
unsigned int cmd, unsigned long arg)
七、sbull_getgeo(struct block_device *bdev, struct hd_geometry *geo)
以下是代码:
/* * Sample disk driver for 2.6.35. */ //#include <linux/autoconf.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/sched.h> #include <linux/kernel.h> /* printk() */ #include <linux/slab.h> /* kmalloc() */ #include <linux/fs.h> /* everything... */ #include <linux/errno.h> /* error codes */ #include <linux/timer.h> #include <linux/types.h> /* size_t */ #include <linux/fcntl.h> /* O_ACCMODE */ #include <linux/hdreg.h> /* HDIO_GETGEO */ #include <linux/kdev_t.h> #include <linux/vmalloc.h> #include <linux/genhd.h> #include <linux/blkdev.h> #include <linux/buffer_head.h> /* invalidate_bdev */ #include <linux/bio.h> MODULE_LICENSE("Dual BSD/GPL"); static int sbull_major = 0; module_param(sbull_major, int, 0); static int hardsect_size = 512; module_param(hardsect_size, int, 0); static int nsectors = 25600; /* How big the drive is */ module_param(nsectors, int, 0); static int ndevices = 1; module_param(ndevices, int, 0); /* * The different "request modes" we can use. */ enum { RM_SIMPLE = 0, /* The extra-simple request function */ RM_FULL = 1, /* The full-blown version */ RM_NOQUEUE = 2, /* Use make_request */ }; //static int request_mode = RM_FULL; //static int request_mode = RM_SIMPLE; static int request_mode = RM_NOQUEUE; module_param(request_mode, int, 0); /* * Minor number and partition management. */ #define SBULL_MINORS 16 #define MINOR_SHIFT 4 #define DEVNUM(kdevnum) (MINOR(kdev_t_to_nr(kdevnum)) >> MINOR_SHIFT /* * We can tweak our hardware sector size, but the kernel talks to us * in terms of small sectors, always. */ #define KERNEL_SECTOR_SIZE 512 /* * After this much idle time, the driver will simulate a media change. */ #define INVALIDATE_DELAY 60*HZ /* * The internal representation of our device. */ struct sbull_dev { int size; /* Device size in sectors */ u8 *data; /* The data array */ short users; /* How many users */ short media_change; /* Flag a media change? */ spinlock_t lock; /* For mutual exclusion */ struct request_queue *queue; /* The device request queue */ struct gendisk *gd; /* The gendisk structure */ struct timer_list timer; /* For simulated media changes */ }; static struct sbull_dev *Devices = NULL; /* * Handle an I/O request. */ static void sbull_transfer(struct sbull_dev *dev, unsigned long sector, unsigned long nsect, char *buffer, int write) { unsigned long offset = sector*KERNEL_SECTOR_SIZE; unsigned long nbytes = nsect*KERNEL_SECTOR_SIZE; //printk("<0>""in %s offset=%d nbytes=%d write=%d\n",__FUNCTION__,offset,nbytes,write); //buffer[10]='\0'; //printk(buffer); //printk("\n"); if ((offset + nbytes) > dev->size) { printk (KERN_NOTICE "Beyond-end write (%ld %ld)\n", offset, nbytes); return; } if (write) memcpy(dev->data + offset, buffer, nbytes); else memcpy(buffer, dev->data + offset, nbytes); } /*The simple form of the request function.*/ static void sbull_request(struct request_queue *q) { struct request *req; req = blk_fetch_request(q); while (req != NULL) { struct sbull_dev *dev = req->rq_disk->private_data; if (! blk_fs_request(req)) { printk (KERN_NOTICE "Skip non-fs request\n"); __blk_end_request_all(req, -EIO); continue; } // printk (KERN_NOTICE "Req dev %d dir %ld sec %ld, nr %d f %lx\n", // dev - Devices, rq_data_dir(req), // req->sector, req->current_nr_sectors, // req->flags); // printk("sectors=%d\n",req->current_nr_sectors); sbull_transfer(dev, blk_rq_pos(req), blk_rq_cur_sectors(req), req->buffer, rq_data_dir(req)); if ( ! __blk_end_request_cur(req, 0) ) { req = NULL; } } } /* * Transfer a single BIO. */ static int sbull_xfer_bio(struct sbull_dev *dev, struct bio *bio) { int i; struct bio_vec *bvec; sector_t sector = bio->bi_sector; /* Do each segment independently. */ bio_for_each_segment(bvec, bio, i) { char *buffer = __bio_kmap_atomic(bio, i, KM_USER0); sbull_transfer(dev, sector, bio_cur_bytes(bio)>>9 , buffer, bio_data_dir(bio) == WRITE); sector += bio_cur_bytes(bio)>>9; __bio_kunmap_atomic(bio, KM_USER0); } return 0; /* Always "succeed" */ } /* * Transfer a full request. */ static int sbull_xfer_request(struct sbull_dev *dev, struct request *req) { struct bio *bio; int nsect = 0; __rq_for_each_bio(bio, req) { sbull_xfer_bio(dev, bio); nsect += bio->bi_size/KERNEL_SECTOR_SIZE; } return nsect; } /* * Smarter request function that "handles clustering".*/ static void sbull_full_request(struct request_queue *q) { struct request *req; int nsect; struct sbull_dev *dev ; req = blk_fetch_request(q); dev = req->rq_disk->private_data; while (req != NULL) { if (! blk_fs_request(req)) { printk (KERN_NOTICE "Skip non-fs request\n"); __blk_end_request_all(req, -EIO); continue; } // printk (KERN_NOTICE "Req dev %d dir %ld sec %ld, nr %d f %lx\n", // dev - Devices, rq_data_dir(req), // req->sector, req->current_nr_sectors, // req->flags); // printk("sectors=%d\n",req->current_nr_sectors); nsect = sbull_xfer_request(dev, req); __blk_end_request(req, 0, (nsect<<9)); // req = blk_fetch_request(q); req = NULL; } } //The direct make request version static int sbull_make_request(struct request_queue *q, struct bio *bio) { struct sbull_dev *dev = q->queuedata; int status; status = sbull_xfer_bio(dev, bio); //bio_endio(bio, bio->bi_size, status); bio_endio(bio, status); return 0; } /* * Open and close. */ static int sbull_open(struct block_device *bdev,fmode_t mode ) { struct sbull_dev *dev = bdev->bd_disk->private_data; //printk("<0>" "fdfjdlksjfdlkj\n"); del_timer_sync(&dev->timer); spin_lock(&dev->lock); if (! dev->users) check_disk_change(bdev); dev->users++; spin_unlock(&dev->lock); return 0; } static int sbull_release(struct gendisk *bd_disk, fmode_t mode) { struct sbull_dev *dev = bd_disk->private_data; spin_lock(&dev->lock); dev->users--; if (!dev->users) { dev->timer.expires = jiffies + INVALIDATE_DELAY; add_timer(&dev->timer); } spin_unlock(&dev->lock); return 0; } /* * Look for a (simulated) media change. */ int sbull_media_changed(struct gendisk *gd) { struct sbull_dev *dev = gd->private_data; return dev->media_change; } /* * Revalidate. WE DO NOT TAKE THE LOCK HERE, for fear of deadlocking * with open. That needs to be reevaluated. */ int sbull_revalidate(struct gendisk *gd) { struct sbull_dev *dev = gd->private_data; if (dev->media_change) { dev->media_change = 0; memset (dev->data, 0, dev->size); } return 0; } /* * The "invalidate" function runs out of the device timer; it sets * a flag to simulate the removal of the media. */ void sbull_invalidate(unsigned long ldev) { struct sbull_dev *dev = (struct sbull_dev *) ldev; spin_lock(&dev->lock); if (dev->users || !dev->data) printk (KERN_WARNING "sbull: timer sanity check failed\n"); else dev->media_change = 1; spin_unlock(&dev->lock); } /* * The ioctl() implementation */ int sbull_ioctl (struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg) { return 0; } static int sbull_getgeo(struct block_device *bdev, struct hd_geometry *geo) { unsigned long size; struct sbull_dev *pdev = bdev->bd_disk->private_data; size = pdev->size; geo->cylinders = (size & ~0x3f) >> 6; geo->heads = 4; geo->sectors = 16; geo->start = 0; return 0; } /* * The device operations structure. */ static struct block_device_operations sbull_ops = { .owner = THIS_MODULE, .open = sbull_open, .release = sbull_release, .media_changed = sbull_media_changed, .revalidate_disk = sbull_revalidate, .ioctl = sbull_ioctl, .getgeo = sbull_getgeo, }; /* * Set up our internal device. */ static void setup_device(struct sbull_dev *dev, int which) { /* * Get some memory. */ memset (dev, 0, sizeof (struct sbull_dev)); dev->size = nsectors*hardsect_size; dev->data = vmalloc(dev->size); if (dev->data == NULL) { printk (KERN_NOTICE "vmalloc failure.\n"); return; } spin_lock_init(&dev->lock); /* * The timer which "invalidates" the device. */ init_timer(&dev->timer); dev->timer.data = (unsigned long) dev; dev->timer.function = sbull_invalidate; /* * The I/O queue, depending on whether we are using our own * make_request function or not. */ switch (request_mode) { case RM_NOQUEUE: dev->queue = blk_alloc_queue(GFP_KERNEL); if (dev->queue == NULL) goto out_vfree; blk_queue_make_request(dev->queue, sbull_make_request); break; case RM_FULL: dev->queue = blk_init_queue(sbull_full_request, &dev->lock); if (dev->queue == NULL) goto out_vfree; break; default: printk(KERN_NOTICE "Bad request mode %d, using simple\n", request_mode); /* fall into.. */ case RM_SIMPLE: dev->queue = blk_init_queue(sbull_request, &dev->lock); if (dev->queue == NULL) goto out_vfree; break; } // blk_queue_hardsect_size(dev->queue, hardsect_size); blk_queue_logical_block_size(dev->queue, hardsect_size); dev->queue->queuedata = dev; /* * And the gendisk structure. */ dev->gd = alloc_disk(SBULL_MINORS); if (! dev->gd) { printk (KERN_NOTICE "alloc_disk failure\n"); goto out_vfree; } dev->gd->major = sbull_major; dev->gd->first_minor = which*SBULL_MINORS; dev->gd->fops = &sbull_ops; dev->gd->queue = dev->queue; dev->gd->private_data = dev; snprintf (dev->gd->disk_name, 32, "sbull%c", which + 'a'); set_capacity(dev->gd, nsectors*(hardsect_size/KERNEL_SECTOR_SIZE)); add_disk(dev->gd); return; out_vfree: if (dev->data) vfree(dev->data); } static int __init sbull_init(void) { int i; /* * Get registered. */ // printk("<0>" "add by lht\n"); sbull_major = register_blkdev(sbull_major, "sbull"); if (sbull_major <= 0) { printk(KERN_WARNING "sbull: unable to get major number\n"); return -EBUSY; } /* * Allocate the device array, and initialize each one. */ Devices = kmalloc(ndevices*sizeof (struct sbull_dev), GFP_KERNEL); if (Devices == NULL) goto out_unregister; for (i = 0; i < ndevices; i++) setup_device(Devices + i, i); return 0; out_unregister: unregister_blkdev(sbull_major, "sbd"); return -ENOMEM; } static void sbull_exit(void) { int i; for (i = 0; i < ndevices; i++) { struct sbull_dev *dev = Devices + i; del_timer_sync(&dev->timer); if (dev->gd) { del_gendisk(dev->gd); put_disk(dev->gd); } if (dev->queue) { if (request_mode == RM_NOQUEUE) // blk_put_queue(dev->queue); kobject_put(&(dev->queue)->kobj); else blk_cleanup_queue(dev->queue); } if (dev->data) vfree(dev->data); } unregister_blkdev(sbull_major, "sbull"); kfree(Devices); } module_init(sbull_init); module_exit(sbull_exit);