Description
You are given two positive integers A and B in Base C. For the equation:
A=k*B+dWe know there always existing many non-negative pairs (k, d) that satisfy the equation above. Now in this problem, we want to maximize k.
For example, A="123" and B="100", C=10. So both A and B are in Base 10. Then we have:
(1) A=0*B+123
(2) A=1*B+23
As we want to maximize k, we finally get one solution: (1, 23)
The range of C is between 2 and 16, and we use 'a', 'b', 'c', 'd', 'e', 'f' to represent 10, 11, 12, 13, 14, 15, respectively.
Input
The first line of the input contains an integer T (T≤10), indicating the number of test cases.
Then T cases, for any case, only 3 positive integers A, B and C (2≤C≤16) in a single line. You can assume that in Base 10, both A and B is less than 2^31.
Output
Sample Input
Sample Output
#include <iostream> #include<string.h> #include<cstdio> #include<cmath> #define ll long long using namespace std; int zhuanhuan(char a[],int c)///将任意进制转化为10进制 { int i=0; int sum=0; int b[1000]={0}; int len=strlen(a); for(i=0;i<len;i++) { /* switch(a[i]) { case 'a':b[i]=10;break; case 'b':b[i]=11;break; case 'c':b[i]=12;break; case 'd':b[i]=13;break; case 'e':b[i]=14;break; case 'f':b[i]=15;break; default:b[i]=a[i]-'0';break; } */ if(a[i]>=0&&a[i]<='9') b[i]=a[i]-'0'; else b[i]=a[i]-'a'+10; } for(int j=0;j<len;j++) sum+=b[j]*pow(c,len-j-1); return sum; } int main() { char x[1000],y[1000]; int t,a,b,c; scanf("%d",&t); while(t--) { scanf("%s%s%d",&x,&y,&c); a=zhuanhuan(x,c); b=zhuanhuan(y,c); if(a<b) printf("(0,%d)\n",a); else { printf("(%d,%d)\n",a/b,a%b); } } return 0; }