以下解释转自http://www.cnblogs.com/destinydesigner/archive/2009/09/28/1575674.html
1 定义
欧拉通路 (Euler tour)——通过图中每条边一次且仅一次,并且过每一顶点的通路。
欧拉回路 (Euler circuit)——通过图中每条边一次且仅一次,并且过每一顶点的回路。
欧拉图——存在欧拉回路的图。
2 无向图是否具有欧拉通路或回路的判定
G有欧拉通路的充分必要条件为:G 连通,G中只有两个奇度顶点(它们分别是欧拉通路的两个端点)。
G有欧拉回路(G为欧拉图):G连通,G中均为偶度顶点。
3 有向图是否具有欧拉通路或回路的判定
D有欧拉通路:D连通,除两个顶点外,其余顶点的入度均等于出度,这两个特殊的顶点中,一个顶点的入度比出度大1,另一个顶点的入度比出度小1。
D有欧拉回路(D为欧拉图):D连通,D中所有顶点的入度等于出度。
4 混合图。混合图也就是无向图与有向图的混合,即图中的边既有有向边也有无向边。
5 混合图欧拉回路
混合图欧拉回路用的是网络流。
把该图的无向边随便定向,计算每个点的入度和出度。如果有某个点出入度之差为奇数,那么肯定不存在欧拉回路。因为欧拉回路要求每点入度 = 出度,也就是总度数为偶数,存在奇数度点必不能有欧拉回路。
现在每个点入度和出度之差均为偶数。将这个偶数除以2,得x。即是说,对于每一个点,只要将x条边反向(入>出就是变入,出>入就是变出),就能保证出 = 入。如果每个点都是出 = 入,那么很明显,该图就存在欧拉回路。
现在的问题就变成了:该改变哪些边,可以让每个点出 = 入?构造网络流模型。有向边不能改变方向,直接删掉。开始已定向的无向边,定的是什么向,就把网络构建成什么样,边长容量上限1。另新建s和t。对于入 > 出的点u,连接边(u, t)、容量为x,对于出 > 入的点v,连接边(s, v),容量为x(注意对不同的点x不同。当初由于不小心,在这里错了好几次)。之后,察看是否有满流的分配。有就是能有欧拉回路,没有就是没有。查看流值分配,将所有流量非 0(上限是1,流值不是0就是1)的边反向,就能得到每点入度 = 出度的欧拉图。
由于是满流,所以每个入 > 出的点,都有x条边进来,将这些进来的边反向,OK,入 = 出了。对于出 > 入的点亦然。那么,没和s、t连接的点怎么办?和s连接的条件是出 > 入,和t连接的条件是入 > 出,那么这个既没和s也没和t连接的点,自然早在开始就已经满足入 = 出了。那么在网络流过程中,这些点属于“中间点”。我们知道中间点流量不允许有累积的,这样,进去多少就出来多少,反向之后,自然仍保持平衡。
所以,就这样,混合图欧拉回路问题,解了。
-----------------------------------------------------------------------------------
注意最大流应该等于的是 所有的出度大于入度的点上的x之和
#include<iostream> #include<algorithm> #include<iomanip> #include<cstring> #include<string> #include<cstdio> #include<cmath> #include<queue> #include<map> #include<set> #define MAXN 2222 #define MAXM 222222 #define INF 1000000000 using namespace std; struct node { int ver; // vertex int cap; // capacity int flow; // current flow in this arc int next, rev; }edge[MAXM]; int dist[MAXN], numbs[MAXN], src, des, n; int head[MAXN], e; void add(int x, int y, int c) { //e记录边的总数 edge[e].ver = y; edge[e].cap = c; edge[e].flow = 0; edge[e].rev = e + 1; //反向边在edge中的下标位置 edge[e].next = head[x]; //记录以x为起点的上一条边在edge中的下标位置 head[x] = e++; //以x为起点的边的位置 //反向边 edge[e].ver = x; edge[e].cap = 0; //反向边的初始网络流为0 edge[e].flow = 0; edge[e].rev = e - 1; edge[e].next = head[y]; head[y] = e++; } void rev_BFS() { int Q[MAXN], qhead = 0, qtail = 0; for(int i = 1; i <= n; ++i) { dist[i] = MAXN; numbs[i] = 0; } Q[qtail++] = des; dist[des] = 0; numbs[0] = 1; while(qhead != qtail) { int v = Q[qhead++]; for(int i = head[v]; i != -1; i = edge[i].next) { if(edge[edge[i].rev].cap == 0 || dist[edge[i].ver] < MAXN)continue; dist[edge[i].ver] = dist[v] + 1; ++numbs[dist[edge[i].ver]]; Q[qtail++] = edge[i].ver; } } } void init() { e = 0; memset(head, -1, sizeof(head)); } int maxflow() { int u, totalflow = 0; int Curhead[MAXN], revpath[MAXN]; for(int i = 1; i <= n; ++i)Curhead[i] = head[i]; u = src; while(dist[src] < n) { if(u == des) // find an augmenting path { int augflow = INF; for(int i = src; i != des; i = edge[Curhead[i]].ver) augflow = min(augflow, edge[Curhead[i]].cap); for(int i = src; i != des; i = edge[Curhead[i]].ver) { edge[Curhead[i]].cap -= augflow; edge[edge[Curhead[i]].rev].cap += augflow; edge[Curhead[i]].flow += augflow; edge[edge[Curhead[i]].rev].flow -= augflow; } totalflow += augflow; u = src; } int i; for(i = Curhead[u]; i != -1; i = edge[i].next) if(edge[i].cap > 0 && dist[u] == dist[edge[i].ver] + 1)break; if(i != -1) // find an admissible arc, then Advance { Curhead[u] = i; revpath[edge[i].ver] = edge[i].rev; u = edge[i].ver; } else // no admissible arc, then relabel this vertex { if(0 == (--numbs[dist[u]]))break; // GAP cut, Important! Curhead[u] = head[u]; int mindist = n; for(int j = head[u]; j != -1; j = edge[j].next) if(edge[j].cap > 0)mindist = min(mindist, dist[edge[j].ver]); dist[u] = mindist + 1; ++numbs[dist[u]]; if(u != src) u = edge[revpath[u]].ver; // Backtrack } } return totalflow; } int ind[MAXN], outd[MAXN]; int xx[MAXM], yy[MAXM], cc[MAXM]; int main() { int T, m; scanf("%d", &T); while(T--) { init(); memset(ind, 0, sizeof(ind)); memset(outd, 0, sizeof(outd)); scanf("%d%d", &n, &m); for(int i = 1; i <= m; i++) { scanf("%d%d%d", &xx[i], &yy[i], &cc[i]); ind[yy[i]]++; outd[xx[i]]++; } bool flag = true; for(int i = 1; i <= n; i++) if((outd[i] - ind[i]) % 2 != 0) { flag = false; break; } if(!flag) {printf("impossible\n"); continue;} int flow = 0; for(int i = 1; i <= m; i++) { if(xx[i] == yy[i] || cc[i]) continue; add(xx[i] + 1, yy[i] + 1, 1); } src = 1, des = n + 2; for(int i = 1; i <= n; i++) { int x = abs(outd[i] - ind[i]) / 2; if(outd[i] > ind[i]) add(src, i + 1, x), flow += x; else if(ind[i] > outd[i]) add(i + 1, des, x); } n = n + 2; rev_BFS(); if(maxflow() == flow) printf("possible\n"); else printf("impossible\n"); } return 0; }