在input.h中定义了 input_dev描述一个具体的input设备 struct input_dev { const char *name; const char *phys; const char *uniq; struct input_id id; unsigned long propbit[BITS_TO_LONGS(INPUT_PROP_CNT)]; unsigned long evbit[BITS_TO_LONGS(EV_CNT)];//设备所支持的事件 unsigned long keybit[BITS_TO_LONGS(KEY_CNT)];//KEY事件支持的编码 unsigned long relbit[BITS_TO_LONGS(REL_CNT)];//REL事件支持的编码 unsigned long absbit[BITS_TO_LONGS(ABS_CNT)]; unsigned long mscbit[BITS_TO_LONGS(MSC_CNT)]; unsigned long ledbit[BITS_TO_LONGS(LED_CNT)]; unsigned long sndbit[BITS_TO_LONGS(SND_CNT)]; unsigned long ffbit[BITS_TO_LONGS(FF_CNT)]; unsigned long swbit[BITS_TO_LONGS(SW_CNT)]; unsigned int hint_events_per_packet; unsigned int keycodemax; unsigned int keycodesize; void *keycode; int (*setkeycode)(struct input_dev *dev, const struct input_keymap_entry *ke, unsigned int *old_keycode); int (*getkeycode)(struct input_dev *dev, struct input_keymap_entry *ke); struct ff_device *ff; unsigned int repeat_key; struct timer_list timer; int rep[REP_CNT]; struct input_mt_slot *mt; int mtsize; int slot; int trkid; struct input_absinfo *absinfo; unsigned long key[BITS_TO_LONGS(KEY_CNT)]; unsigned long led[BITS_TO_LONGS(LED_CNT)]; unsigned long snd[BITS_TO_LONGS(SND_CNT)]; unsigned long sw[BITS_TO_LONGS(SW_CNT)]; int (*open)(struct input_dev *dev); void (*close)(struct input_dev *dev); int (*flush)(struct input_dev *dev, struct file *file); int (*event)(struct input_dev *dev, unsigned int type, unsigned int code, int value); struct input_handle __rcu *grab; spinlock_t event_lock; struct mutex mutex; unsigned int users; bool going_away; bool sync; struct device dev; struct list_head h_list;//handle的链表 struct list_head node; }; input_handler为input设置提供接口 struct input_handler { void *private; void (*event)(struct input_handle *handle, unsigned int type, unsigned int code, int value);//当有事件的时候被input core调用 bool (*filter)(struct input_handle *handle, unsigned int type, unsigned int code, int value);//分离出常规事件 bool (*match)(struct input_handler *handler, struct input_dev *dev);//当匹配handler和设备的时候调用 int (*connect)(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id);//当handler和设备匹配的后调用 void (*disconnect)(struct input_handle *handle); void (*start)(struct input_handle *handle);//在connect之后调用start const struct file_operations *fops; int minor; const char *name; const struct input_device_id *id_table; struct list_head h_list;//handle的链表 struct list_head node; }; input_handle是关联设备和handler的桥梁 struct input_handle { void *private; int open;//打开标志 const char *name; struct input_dev *dev; struct input_handler *handler; struct list_head d_node;//input_dev的链表 struct list_head h_node;//handler的链表 }; 在知道这3个结构体以后,我们开始分析input.c的代码 先看input的入口和出口 static int __init input_init(void) { int err; err = class_register(&input_class);//向内核注册一个类,用于linux设备模型,注册后会在/sys/class/下面出现input目录 if (err) { pr_err("unable to register input_dev class\n"); return err; } err = input_proc_init();//与proc文件系统有关 if (err) goto fail1; /*注册字符设备,主设备号为13表示input设备,可以在/proc/devices下看到*/ err = register_chrdev(INPUT_MAJOR, "input", &input_fops); if (err) { pr_err("unable to register char major %d", INPUT_MAJOR); goto fail2; } return 0; fail2: input_proc_exit(); fail1: class_unregister(&input_class); return err; } static void __exit input_exit(void) { input_proc_exit(); unregister_chrdev(INPUT_MAJOR, "input"); class_unregister(&input_class); } subsys_initcall(input_init); module_exit(input_exit); 在注册input的时候绑定的操作函数集 static const struct file_operations input_fops = { .owner = THIS_MODULE, .open = input_open_file, .llseek = noop_llseek, }; 这里主要看 input_open_file static int input_open_file(struct inode *inode, struct file *file) { struct input_handler *handler; const struct file_operations *old_fops, *new_fops = NULL; int err; err = mutex_lock_interruptible(&input_mutex); if (err) return err; /* No load-on-demand here? */ handler = input_table[iminor(inode) >> 5];//获得handler,因为每个注册的handler都会把自己注册到input_table这个数组里,下标右移5位表示除以32,因为每个handler最大可以处理32个设备,所以是以32为倍数对齐 if (handler) new_fops = fops_get(handler->fops);//获得handler的操作函数集 mutex_unlock(&input_mutex); /* * That's _really_ odd. Usually NULL ->open means "nothing special", * not "no device". Oh, well... */ if (!new_fops || !new_fops->open) { fops_put(new_fops); err = -ENODEV; goto out; } old_fops = file->f_op; file->f_op = new_fops; err = new_fops->open(inode, file); if (err) { fops_put(file->f_op); file->f_op = fops_get(old_fops); } fops_put(old_fops); out: return err; } 这个函数只要是得到handler的操作函数集,如果获得成功,使用新的操作函数集代替旧的,并调用新函数集的open函数。 接下来看input子系统中3个重要结构体的注册和注销(input_dev,input_handle,input_handler) int input_register_device(struct input_dev *dev) { static atomic_t input_no = ATOMIC_INIT(0);//原子变量,代表总共注册的input设备,每注册一个加1,由于是静态变量,每次调用都不会清零 struct input_handler *handler; const char *path; int error; /* Every input device generates EV_SYN/SYN_REPORT events. */ __set_bit(EV_SYN, dev->evbit);//EV_SYN这个是所有设备要支持的事件类型,所以要设置 /* KEY_RESERVED is not supposed to be transmitted to userspace. */ __clear_bit(KEY_RESERVED, dev->keybit);//KEY_RESERVED(版权)不应该传到用户空间 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */ input_cleanse_bitmasks(dev);//确保dev->evbit被清零是不介意的 if (!dev->hint_events_per_packet) dev->hint_events_per_packet = input_estimate_events_per_packet(dev); /* * If delay and period are pre-set by the driver, then autorepeating * is handled by the driver itself and we don't do it in input.c. */ init_timer(&dev->timer);//为了重复按键设置内核定时器 /*初始化内核定时器,如果没有定义相关重复按键值,使用默认值*/ if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) { dev->timer.data = (long) dev; dev->timer.function = input_repeat_key; dev->rep[REP_DELAY] = 250; dev->rep[REP_PERIOD] = 33; } /*如果没有dev->getkeycode和dev->setkeycode使用由input提供的默认函数*/ if (!dev->getkeycode) dev->getkeycode = input_default_getkeycode; if (!dev->setkeycode) dev->setkeycode = input_default_setkeycode; /*设置input_dev中device的名字,名字将在/class/input/中出现*/ dev_set_name(&dev->dev, "input%ld", (unsigned long) atomic_inc_return(&input_no) - 1); error = device_add(&dev->dev);//将device加到linux设备模型中 if (error) return error; /*得到device的路径*/ path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL); pr_info("%s as %s\n", dev->name ? dev->name : "Unspecified device", path ? path : "N/A"); kfree(path); error = mutex_lock_interruptible(&input_mutex);//上锁 if (error) { device_del(&dev->dev); return error; } list_add_tail(&dev->node, &input_dev_list);//将device的节点加到input_dev_list链表上 /*遍历input_handler_list链表,配对input_dev和input_handler*/ list_for_each_entry(handler, &input_handler_list, node) input_attach_handler(dev, handler); input_wakeup_procfs_readers(); mutex_unlock(&input_mutex); return 0; } EXPORT_SYMBOL(input_register_device); 在注册input_dev主要完成嘞一些初始化设置,然后调用 input_attach_handler来匹配input_dev和input_handler. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler) { const struct input_device_id *id; int error; /*主要的配对函数,主要比较ID中的各项*/ id = input_match_device(handler, dev); if (!id) return -ENODEV; /*配对成功调用 handler->connect函数,在事件处理器中定义,主要生成input_handle结构,并初始化,还生成一个事件处理器相关的结构*/ error = handler->connect(handler, dev, id); if (error && error != -ENODEV) pr_err("failed to attach handler %s to device %s, error: %d\n", handler->name, kobject_name(&dev->dev.kobj), error); return error; } 匹配首先调用了 input_match_device,在匹配成功以后调用了handler的connect函数 static const struct input_device_id *input_match_device(struct input_handler *handler, struct input_dev *dev) { const struct input_device_id *id; int i; /*遍历传入的handler->id_table,寻找合适的ID进行配对*/ for (id = handler->id_table; id->flags || id->driver_info; id++) { /*根据flags来,来筛选出同种类型的ID,否者进入下一个ID*/ if (id->flags & INPUT_DEVICE_ID_MATCH_BUS) if (id->bustype != dev->id.bustype) continue; if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR) if (id->vendor != dev->id.vendor) continue; if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT) if (id->product != dev->id.product) continue; if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION) if (id->version != dev->id.version) continue; MATCH_BIT(evbit, EV_MAX); MATCH_BIT(keybit, KEY_MAX); MATCH_BIT(relbit, REL_MAX); MATCH_BIT(absbit, ABS_MAX); MATCH_BIT(mscbit, MSC_MAX); MATCH_BIT(ledbit, LED_MAX); MATCH_BIT(sndbit, SND_MAX); MATCH_BIT(ffbit, FF_MAX); MATCH_BIT(swbit, SW_MAX); if (!handler->match || handler->match(handler, dev)) return id; } return NULL; } 这个函数主要从handler->id_table中找出和input_dev同种类型的input_handler,然后比较支持的事件,最后看handler是否提供了match函数,提供了就调用handler的match进行匹配,没有提供直接返回同类型的id. #define MATCH_BIT(bit, max) \ for (i = 0; i < BITS_TO_LONGS(max); i++) \ if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \ break; \ if (i != BITS_TO_LONGS(max)) \ continue; 这个可以看出这里是按位比较,比较成功,进入下一个MATCH_BIT比较下一个事件类型,否则进行下一个ID的比较。对于触摸屏来说对应的事件处理器为evdev,在evdev事件处理器中没有提供match函数,所以只要flag和事件类型都匹配成功,就会返回这个handler的id。当然evdev提供了connect函数evdev_connect static int evdev_connect(struct input_handler *handler, struct input_dev *dev, const struct input_device_id *id) { struct evdev *evdev; int minor; int error; /*由于EVDEV_MINORS等于32,说明evdev可以同时有32个设备和它配对,evdev_table的下标minor并不是次设备号*/ for (minor = 0; minor < EVDEV_MINORS; minor++) if (!evdev_table[minor]) break; /*说明32个设备全部被占用了,链接失败*/ if (minor == EVDEV_MINORS) { pr_err("no more free evdev devices\n"); return -ENFILE; } evdev = kzalloc(sizeof(struct evdev), GFP_KERNEL); if (!evdev) return -ENOMEM; INIT_LIST_HEAD(&evdev->client_list); spin_lock_init(&evdev->client_lock); mutex_init(&evdev->mutex); init_waitqueue_head(&evdev->wait); /* 设置evdev中device的名字,它也将出现在/class/input/下,但是他和input_dev下面的device是有区别的, * evdev配对以后的虚拟设备结构,没有对应的硬件,但是可以通过它找到相应的硬件*/ dev_set_name(&evdev->dev, "event%d", minor); evdev->exist = true; evdev->minor = minor; evdev->handle.dev = input_get_device(dev); evdev->handle.name = dev_name(&evdev->dev); evdev->handle.handler = handler; evdev->handle.private = evdev; evdev->dev.devt = MKDEV(INPUT_MAJOR, EVDEV_MINOR_BASE + minor);//minor不是真正的次设备号,还要加上EVDEV_MINOR_BASE evdev->dev.class = &input_class; evdev->dev.parent = &dev->dev;//配对生成新的device,父设备是与他相关联的input_dev evdev->dev.release = evdev_free; device_initialize(&evdev->dev); error = input_register_handle(&evdev->handle);//注册handle结构体 if (error) goto err_free_evdev; error = evdev_install_chrdev(evdev);//把evdev结构保存到evdev_table中,这个数组以minor为索引 if (error) goto err_unregister_handle; error = device_add(&evdev->dev);//将evdev下面的device注册到linux设备模型中 if (error) goto err_cleanup_evdev; return 0; err_cleanup_evdev: evdev_cleanup(evdev); err_unregister_handle: input_unregister_handle(&evdev->handle); err_free_evdev: put_device(&evdev->dev); return error; } connect函数evdev的分配和初始化,保存到evdev_table数组中,并注册一个handle。 int input_register_handle(struct input_handle *handle) { struct input_handler *handler = handle->handler; struct input_dev *dev = handle->dev; int error; /* * We take dev->mutex here to prevent race with * input_release_device(). */ error = mutex_lock_interruptible(&dev->mutex); if (error) return error; /* * Filters go to the head of the list, normal handlers * to the tail. */ if (handler->filter) list_add_rcu(&handle->d_node, &dev->h_list);//将handle的d_node链接到相关input_dev的h_list链表中 else list_add_tail_rcu(&handle->d_node, &dev->h_list); mutex_unlock(&dev->mutex); /* * Since we are supposed to be called from ->connect() * which is mutually exclusive with ->disconnect() * we can't be racing with input_unregister_handle() * and so separate lock is not needed here. */ list_add_tail_rcu(&handle->h_node, &handler->h_list);//将handle的h_node链接到其相关的input_handler的h_list链表中 if (handler->start) handler->start(handle); return 0; } EXPORT_SYMBOL(input_register_handle); 从上面可以看出,connect调用input_register_handle主要就是通过handle充当桥梁,建立input_dev和input_handler的关联。 input_handler的注册,一般事件处理层入口处注册input_handler,比如evdev事件处理器 static int __init evdev_init(void) { /*将evdev_handler注册到系统中*/ return input_register_handler(&evdev_handler); } static void __exit evdev_exit(void) { input_unregister_handler(&evdev_handler); } module_init(evdev_init); module_exit(evdev_exit); input_handler的注册有什么作用呢? int input_register_handler(struct input_handler *handler) { struct input_dev *dev; int retval; retval = mutex_lock_interruptible(&input_mutex); if (retval) return retval; INIT_LIST_HEAD(&handler->h_list); /*每次注册一个handler都会将其保存到input_table,这里索引值等于handler->minor左移5位,也就是除以32 * 因为每个handler最多可以处理32个input_dev设备,所以要以32为对齐minor是传进来的handler的MINOR_BASE*/ if (handler->fops != NULL) { if (input_table[handler->minor >> 5]) { retval = -EBUSY; goto out; } input_table[handler->minor >> 5] = handler; } list_add_tail(&handler->node, &input_handler_list);//将handler连接到input_handler_list链表中 /*遍历input_dev链表,开始匹配*/ list_for_each_entry(dev, &input_dev_list, node) input_attach_handler(dev, handler); input_wakeup_procfs_readers(); out: mutex_unlock(&input_mutex); return retval; } EXPORT_SYMBOL(input_register_handler); 从上面的代码可以看出注册handler主要完成两件事,首先将handler链接到input_handler_list链表,然后匹配input_dev和input_handler.在注册input_dev的时候需要匹配input_dev和input_handler,是遍历的handler的链表,表示从device来找handler。在注册input_handler的时候也需要匹配input_dev和input_handler,但是是遍历的dev的链表,表示是从handler来找device。