http://codeforces.com/problemset/problem/527/C
Leonid wants to become a glass carver (the person who creates beautiful artworks by cutting the glass). He already has a rectangular wmm × h mm sheet of glass, a diamond glass cutter and lots of enthusiasm. What he lacks is understanding of what to carve and how.
In order not to waste time, he decided to practice the technique of carving. To do this, he makes vertical and horizontal cuts through the entire sheet. This process results in making smaller rectangular fragments of glass. Leonid does not move the newly made glass fragments. In particular, a cut divides each fragment of glass that it goes through into smaller fragments.
After each cut Leonid tries to determine what area the largest of the currently available glass fragments has. Since there appear more and more fragments, this question takes him more and more time and distracts him from the fascinating process.
Leonid offers to divide the labor — he will cut glass, and you will calculate the area of the maximum fragment after each cut. Do you agree?
The first line contains three integers w, h, n (2 ≤ w, h ≤ 200 000, 1 ≤ n ≤ 200 000).
Next n lines contain the descriptions of the cuts. Each description has the form H y or V x. In the first case Leonid makes the horizontal cut at the distance y millimeters (1 ≤ y ≤ h - 1) from the lower edge of the original sheet of glass. In the second case Leonid makes a vertical cut at distance x (1 ≤ x ≤ w - 1) millimeters from the left edge of the original sheet of glass. It is guaranteed that Leonid won't make two identical cuts.
After each cut print on a single line the area of the maximum available glass fragment in mm2.
4 3 4 H 2 V 2 V 3 V 1
8 4 4 2
7 6 5 H 4 V 3 V 5 H 2 V 1
28 16 12 6 4
/** CF 527C STL set和multiset 典型应用 题目大意:给定一个n*m的矩形,每次沿水平或垂直方向切一刀后分成的小矩形块中面积最大的是多少? 解题思路:用两个set维护每次切的位置,用两个multiset维护切完后每段的长度,每进行一次更新把所切位置tmp最近的左右两个切过的位置a,b找出 在multiset中将b-a,删掉,并且加入b-tmp和tmp-a。横纵最大长度相乘即为最后答案 又学到了stl的许多小知识,见代码注释 */ #include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <set> using namespace std; typedef long long LL; int ww,hh,n; int main() { while(~scanf("%d%d%d",&ww,&hh,&n)) { set<LL>h; set<LL>w; multiset <LL> blh; multiset <LL> blw; h.insert(0); h.insert(hh); w.insert(0); w.insert(ww); blh.insert(hh); blw.insert(ww); for(int i=1; i<=n; i++) { char op[5]; int tmp; scanf("%s%d",op,&tmp); if(op[0]=='H') { set <LL> :: iterator it=(h.insert(tmp)).first;///set的插入操作返回的是一个pair结构:.first表示刚刚插入值的地址迭代器: ///.second()second是0或1,1代表无重复,0代表重复 it--; LL a=*it; it++;///迭代题只有++,没有+= it++; LL b=*it; blh.erase(blh.lower_bound(b-a)); blh.insert(b-tmp); blh.insert(tmp-a); printf("%I64d\n",(*blh.rbegin())*(*blw.rbegin()));///rbegin()表示最后一个元素地址的迭代器 } else { set<LL>::iterator it=(w.insert(tmp)).first; it--; LL a=*it; it++; it++; LL b=*it; blw.erase(blw.lower_bound(b-a)); blw.insert(b-tmp); blw.insert(tmp-a); printf("%I64d\n",(*blw.rbegin())*(*blh.rbegin())); } } } return 0; }