题目:
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1]
, return 6
.
The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped.Thanks Marcos for contributing this image!
题解:
规律:每一个位置的储水量取决于该位置的 Left Largest Height (LLH) 和 Right Largest Height (RLH),对于位置i,
若A[i] < min(LLH[i], RLH[i]),则该点储水量为min(LLH[i], RLH[i])-A[i],
否则若A[i] >= min(LLH[i], RLH[i]),则该点的储水量为0。
从左至右扫描数组获得LLH[i],从右至左边求RLH[i]边计算储水量。
需要额外O(n)存储空间,时间复杂度O(2n)=O(n)。
class Solution { public: int trap(int A[], int n) { int* leftMaxHeight = new int[n]; int leftMaxH = 0; for(int i = 0; i < n; i++) { leftMaxHeight[i] = leftMaxH; if(A[i] > leftMaxH) leftMaxH = A[i]; } int rightMaxH = 0; int sum = 0; for(int j = n - 1; j >= 0; j--) { if(A[j] < FindMin(rightMaxH, leftMaxHeight[j])) sum += FindMin(rightMaxH, leftMaxHeight[j]) - A[j]; if(A[j] > rightMaxH) rightMaxH = A[j]; } return sum; } int static FindMin( int a, int b) { if(a <= b) return a; else return b; } };