代码中遇到LRUCache的数据结构,仔细研究一下底层就是一个LinkedHashMap的基础数据结构,于是决定简单的总结一下LinkedHashMap的源码。
public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V>可以看出LinkedHashMap是继承于HashMap类的同时也是对Map结构的一种实现。那LinkedHashMap内部实现结构与HashMap相比有什么不同呢,用一句话来概括一下:
LinkedHashMap在HashMap原有的Hash表结构基础上将HashMap中的所有节点维护为一个双向循环链表的结构,从而似的LinkedHashMap能够支持按照key-value的插入顺序(Insertion-order)或者访问顺序(Access-order)去遍历访问。
/** * LinkedHashMap entry. */ private static class Entry<K,V> extends HashMap.Entry<K,V> { // These fields comprise the doubly linked list used for iteration. Entry<K,V> before, after; //双向循环链表的前驱节点和后继节点指针 Entry(int hash, K key, V value, HashMap.Entry<K,V> next) { super(hash, key, value, next); //构造函数直接调用父类的构造函数 } /** * Removes this entry from the linked list. */ private void remove() { //删除操作 before.after = after; after.before = before; } /** * Inserts this entry before the specified existing entry in the list. */ private void addBefore(Entry<K,V> existingEntry) { //插入操作 after = existingEntry; before = existingEntry.before; before.after = this; after.before = this; } /** * This method is invoked by the superclass whenever the value * of a pre-existing entry is read by Map.get or modified by Map.set. * If the enclosing Map is access-ordered, it moves the entry * to the end of the list; otherwise, it does nothing. */ void recordAccess(HashMap<K,V> m) { //重写父类的recordAccess函数,对双向链表进行维护 LinkedHashMap<K,V> lm = (LinkedHashMap<K,V>)m; if (lm.accessOrder) { lm.modCount++; remove(); addBefore(lm.header); //这里很重要的一点:每次将最近访问的节点移动到双向链表的虚拟header节点之前 } } void recordRemoval(HashMap<K,V> m) { //重写父类的recordRemoval函数 remove(); } }
/** * Constructs an empty <tt>LinkedHashMap</tt> instance with the * specified initial capacity, load factor and ordering mode. * * @param initialCapacity the initial capacity * @param loadFactor the load factor * @param accessOrder the ordering mode - <tt>true</tt> for * access-order, <tt>false</tt> for insertion-order * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive */ public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.accessOrder = accessOrder; //用于判断当前LinkedHashMap的双向循环链表维护方式,即AccessOrder和InsertionOrder }可以看到这里主要时调用父类的构造函数,同时初始化双向循环链表的维护方式。
/** * Called by superclass constructors and pseudoconstructors (clone, * readObject) before any entries are inserted into the map. Initializes * the chain. */ void init() { header = new Entry<K,V>(-1, null, null, null); header.before = header.after = header; //初始化双向循环链表的虚拟header节点 }这里需要说明的一点时header的声明:
/** * The head of the doubly linked list. */ private transient Entry<K,V> header;生明中使用了transient关键字,也就是说当一个LinkedHashMap被串行化的时候,header节点是不会被包括在内的,也就是说,header节点并不存储真正有意义的数据域。
/** * This override alters behavior of superclass put method. It causes newly * allocated entry to get inserted at the end of the linked list and * removes the eldest entry if appropriate. */ void addEntry(int hash, K key, V value, int bucketIndex) { createEntry(hash, key, value, bucketIndex); // Remove eldest entry if instructed, else grow capacity if appropriate Entry<K,V> eldest = header.after; if (removeEldestEntry(eldest)) { //是否删除最最少访问节点 removeEntryForKey(eldest.key); //这里被淘汰的节点始终时header节点的after节点 } else { //与HashMap中的处理方式相同,增大capacity重建Hash if (size >= threshold) resize(2 * table.length); } }这里比较有意思的函数是
removeEldestEntry(eldest)如果你有兴趣看这段注释的话,你会发现他其实视为了给程序员实现Cache提供的一个可扩展接口,也就是说在你自己的Cache类中继承并重写这个函数,就可以实现指定策略的Cache。如将accessOrder设为true,同时按照注释中的示例重写方式,就实现了LRU;如果使用默认accessOrder为false,同时按照注释中的示例重写方式就会保证最早被插入的优先被删除。
/** * Returns <tt>true</tt> if this map should remove its eldest entry. * This method is invoked by <tt>put</tt> and <tt>putAll</tt> after * inserting a new entry into the map. It provides the implementor * with the opportunity to remove the eldest entry each time a new one * is added. This is useful if the map represents a cache: it allows * the map to reduce memory consumption by deleting stale entries. * * <p>Sample use: this override will allow the map to grow up to 100 * entries and then delete the eldest entry each time a new entry is * added, maintaining a steady state of 100 entries. * <pre> * private static final int MAX_ENTRIES = 100; * * protected boolean removeEldestEntry(Map.Entry eldest) { * return size() > MAX_ENTRIES; * } * </pre> * * <p>This method typically does not modify the map in any way, * instead allowing the map to modify itself as directed by its * return value. It <i>is</i> permitted for this method to modify * the map directly, but if it does so, it <i>must</i> return * <tt>false</tt> (indicating that the map should not attempt any * further modification). The effects of returning <tt>true</tt> * after modifying the map from within this method are unspecified. * * <p>This implementation merely returns <tt>false</tt> (so that this * map acts like a normal map - the eldest element is never removed). * * @param eldest The least recently inserted entry in the map, or if * this is an access-ordered map, the least recently accessed * entry. This is the entry that will be removed it this * method returns <tt>true</tt>. If the map was empty prior * to the <tt>put</tt> or <tt>putAll</tt> invocation resulting * in this invocation, this will be the entry that was just * inserted; in other words, if the map contains a single * entry, the eldest entry is also the newest. * @return <tt>true</tt> if the eldest entry should be removed * from the map; <tt>false</tt> if it should be retained. */ protected boolean removeEldestEntry(Map.Entry<K,V> eldest) { return false; }通过createEntry实现了新的key-value插入,
/** * This override differs from addEntry in that it doesn't resize the * table or remove the eldest entry. */ void createEntry(int hash, K key, V value, int bucketIndex) { HashMap.Entry<K,V> old = table[bucketIndex]; Entry<K,V> e = new Entry<K,V>(hash, key, value, old); table[bucketIndex] = e; //三步保证插入始终在bucketIndex的邻接链表头 e.addBefore(header); //维护双向循环链表,这里保证新插入的节点始终在header的前面 size++; }到这里就是先了put的全部功能
/** * Returns the value to which the specified key is mapped, * or {@code null} if this map contains no mapping for the key. * * <p>More formally, if this map contains a mapping from a key * {@code k} to a value {@code v} such that {@code (key==null ? k==null : * key.equals(k))}, then this method returns {@code v}; otherwise * it returns {@code null}. (There can be at most one such mapping.) * * <p>A return value of {@code null} does not <i>necessarily</i> * indicate that the map contains no mapping for the key; it's also * possible that the map explicitly maps the key to {@code null}. * The {@link #containsKey containsKey} operation may be used to * distinguish these two cases. */ public V get(Object key) { Entry<K,V> e = (Entry<K,V>)getEntry(key); //调用父类的getKey if (e == null) return null; e.recordAccess(this); //调用重写过得recordAccess在适当情况下维护双向链表 return e.value; }
/** * Returns <tt>true</tt> if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested * @return <tt>true</tt> if this map maps one or more keys to the * specified value */ public boolean containsValue(Object value) { // Overridden to take advantage of faster iterator if (value==null) { for (Entry e = header.after; e != header; e = e.after) if (e.value==null) return true; } else { for (Entry e = header.after; e != header; e = e.after) if (value.equals(e.value)) return true; } return false; }