http://www.cnblogs.com/cvlabs/archive/2010/01/13/1646902.html
Normalized Cross correlation (NCC)
NCC(u,v) = [(wl - w)/(|wl - w|)]*[(wr - w)/(|wr - w|)] 選擇最大值
Sum of Squared Defferences (SSD)
SSD(u,v) = Sum{[Left(u,v) - Right(u,v)] * [Left(u,v) - Right(u,v)]} 選擇最大值
Sum of Absolute Defferences (SAD)
SAD(u,v) = Sum{|Left(u,v) - Right(u,v)|} 選擇最小值
先說說SAD算法的基本流程:
1.構造一個小窗口,類似與卷積核。
2.用窗口覆蓋左邊的圖像,選擇出窗口覆蓋區域內的所有像素點。
3.同樣用窗口覆蓋右邊的圖像並選擇出覆蓋區域的像素點。
4.左邊覆蓋區域減去右邊覆蓋區域,並求出所有像素點差的絕對值的和。
5.移動右邊圖像的窗口,重復3,4的動作。(這裡有個搜索范圍,超過這個范圍跳出)
6.找到這個范圍內SAD值最小的窗口,即找到了左邊圖像的最佳匹配的像素塊。
OpenCV代碼示范SAD:
代碼Code highlighting produced by Actipro CodeHighlighter (freeware)http://www.CodeHighlighter.com/--> 1 IplImage* generateDisparityImage(IplImage* greyLeftImg32, IplImage* greyRightImg32, int windowSize,int DSR){ int offset=floor((double)windowSize/2); int height=greyLeftImg32->height; int width=greyLeftImg32->width; double* localSAD=new double[DSR];//DSR即搜索范圍 int x=0, y=0,d=0,m=0; int N=windowSize; IplImage* winImg=cvCreateImage(cvSize(N,N),32,1);//mySubImage(greyLeftImg32,cvRect(0,0,N,N)); IplImage* disparity=cvCreateImage(cvSize(width,height),8,1);//or IPL_DEPTH_8U BwImage imgA(disparity); for (y=0;y<height;y++){ for (x=0;x<width;x++){ imgA[y][x]=0; } } CvScalar sum; //CvScalar s2; for (y=0;y<height-N;y++){ //height-N for (x=0;x<width-N;x++){//width-N cvSetImageROI(greyLeftImg32, cvRect(x,y,N,N)); d=0; //initialise localSAD for (m=0;m<DSR;m++){localSAD[m]=0;} //start matching do{ if (x-d>=0){ cvSetImageROI(greyRightImg32, cvRect(x-d,y,N,N)); }else{ break; } cvAbsDiff(greyLeftImg32,greyRightImg32,winImg);//absolute difference sum=cvSum(winImg);//sum localSAD[d]=sum.val[0];//0 means single channel cvResetImageROI(greyRightImg32); d++; }while(d<=DSR); //to find the best d and store imgA[y+offset][x+offset]=getMaxMin(localSAD,DSR,0)*16; //0 means return minimum index cvResetImageROI(greyLeftImg32); }//x if (y%10==0)cout<<"row="<<y<<" of "<<height<<endl; }//y cvReleaseImage(&winImg); //cvReleaseImage(&rightWinImg); return disparity; }