【python】面向高级对象 slots

给实例添加属性和方法

正常情况下,当我们定义了一个class,创建了一个class的实例后,我们可以给该实例绑定任何属性和方法,这就是动态语言的灵活性。先定义class

>>> class Student(object):
...     pass
...

然后,尝试给实例绑定一个属性:

>>> s = Student()
>>> s.name = 'Michael' # 动态给实例绑定一个属性
>>> print s.name
Michael

还可以尝试给实例绑定一个方法:

>>> def set_age(self, age): # 定义一个函数作为实例方法
...     self.age =age
...
>>> from types import MethodType
>>> s.set_age = MethodType(set_age, s, Student)# 给实例绑定一个方法
>>> s.set_age(25) # 调用实例方法
>>> s.age # 测试结果
25

但是,给一个实例绑定的方法,对另一个实例是不起作用的:

>>> s2 = Student() # 创建新的实例
>>> s2.set_age(25) # 尝试调用方法
Traceback (most recent call last):
  File"<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute'set_age'

为了给所有实例都绑定方法,可以给class绑定方法:

>>> def set_score(self, score):
...     self.score= score
...
>>> Student.set_score = MethodType(set_score,None, Student)

class绑定方法后,所有实例均可调用:

>>> s.set_score(100)
>>> s.score
100
>>> s2.set_score(99)
>>> s2.score
99

通常情况下,上面的set_score方法可以直接定义在class中,但动态绑定允许我们在程序运行的过程中动态给class加上功能,这在静态语言中很难实现。

使用__slots__

但是,如果我们想要限制class的属性怎么办?比如,只允许对Student实例添加nameage属性。

为了达到限制的目的,Python允许在定义class的时候,定义一个特殊的__slots__变量,来限制该class能添加的属性:

>>> class Student(object):
...     __slots__ =('name', 'age') # 用tuple定义允许绑定的属性名称
...

然后,我们试试:

>>> s = Student() # 创建新的实例
>>> s.name = 'Michael' # 绑定属性'name'
>>> s.age = 25 # 绑定属性'age'
>>> s.score = 99 # 绑定属性'score'
Traceback (most recent call last):
  File"<stdin>", line 1, in <module>
AttributeError: 'Student' object has no attribute 'score'

由于'score'没有被放到__slots__中,所以不能绑定score属性,试图绑定score将得到AttributeError的错误。

使用__slots__要注意,__slots__定义的属性仅对当前类起作用,对继承的子类是不起作用的:

>>> class GraduateStudent(Student):
...     pass
...
>>> g = GraduateStudent()
>>> g.score = 9999

除非在子类中也定义__slots__,这样,子类允许定义的属性就是自身的__slots__加上父类的__slots__

使用@property

在绑定属性时,如果我们直接把属性暴露出去,虽然写起来很简单,但是,没办法检查参数,导致可以把成绩随便改:

s = Student()
s.score = 9999

这显然不合逻辑。为了限制score的范围,可以通过一个set_score()方法来设置成绩,再通过一个get_score()来获取成绩,这样,在set_score()方法里,就可以检查参数:

class Student(object):
    def get_score(self):
        return self._score
 
    def set_score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

但是,上面的调用方法又略显复杂,没有直接用属性这么直接简单。

有没有既能检查参数,又可以用类似属性这样简单的方式来访问类的变量呢?对于追求完美的Python程序员来说,这是必须要做到的!

还记得装饰器(decorator)可以给函数动态加上功能吗?对于类的方法,装饰器一样起作用。Python内置的@property装饰器就是负责把一个方法变成属性调用的:

class Student(object):
 
    @property
    def score(self):
        return self._score
 
    @score.setter
    def score(self, value):
        if not isinstance(value, int):
            raise ValueError('score must be an integer!')
        if value < 0 or value > 100:
            raise ValueError('score must between 0 ~ 100!')
        self._score = value

@property的实现比较复杂,我们先考察如何使用。把一个getter方法变成属性,只需要加上@property就可以了,此时,@property本身又创建了另一个装饰器@score.setter,负责把一个setter方法变成属性赋值,于是,我们就拥有一个可控的属性操作:

>>> s = Student()
>>> s.score = 60 # OK,实际转化为s.set_score(60)
>>> s.score # OK,实际转化为s.get_score()
60
>>> s.score = 9999
Traceback (most recent call last):
  ...
ValueError: score must between 0 ~ 100!

注意到这个神奇的@property,我们在对实例属性操作的时候,就知道该属性很可能不是直接暴露的,而是通过gettersetter方法来实现的。

还可以定义只读属性,只定义getter方法,不定义setter方法就是一个只读属性:

class Student(object):
 
    @property
    def birth(self):
        return self._birth
 
    @birth.setter
    def birth(self, value):
        self._birth = value
 
    @property
    def age(self):
        return 2014 - self._birth

上面的birth是可读写属性,而age就是一个只读属性,因为age可以根据birth和当前时间计算出来。


 

你可能感兴趣的:(python,面向高级对象)