POJ 2778 DNA Sequence



DNA Sequence
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 10953   Accepted: 4188

Description

It's well known that DNA Sequence is a sequence only contains A, C, T and G, and it's very useful to analyze a segment of DNA Sequence,For example, if a animal's DNA sequence contains segment ATC then it may mean that the animal may have a genetic disease. Until now scientists have found several those segments, the problem is how many kinds of DNA sequences of a species don't contain those segments. 

Suppose that DNA sequences of a species is a sequence that consist of A, C, T and G,and the length of sequences is a given integer n. 

Input

First line contains two integer m (0 <= m <= 10), n (1 <= n <=2000000000). Here, m is the number of genetic disease segment, and n is the length of sequences. 

Next m lines each line contain a DNA genetic disease segment, and length of these segments is not larger than 10. 

Output

An integer, the number of DNA sequences, mod 100000.

Sample Input

4 3
AT
AC
AG
AA

Sample Output

36

Source

POJ Monthly--2006.03.26,dodo

[Submit]   [Go Back]   [Status]   [Discuss]


非常经典的AC自动机+矩阵。。。。。

节点比较少,需要构造的串很长。。。所以直接把各种转移状态记录到矩阵里,用快速幂解决。。。


#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <queue>

using namespace std;

const int maxn=10000;
const int MOD=100000;

int idx(char x)
{
    if(x=='A') return 0;
    else if(x=='T') return 1;
    else if(x=='C') return 2;
    else if(x=='G') return 3;
}

int ch[maxn][5],fail[maxn],end[maxn];
int root,sz;
char str[200];

int newnode()
{
    memset(ch[sz],-1,sizeof(ch[sz]));
    end[sz++]=0;
    return sz-1;
}

void ac_init()
{
    sz=0; root=newnode();
}

void ac_insert(char str[])
{
    int len=strlen(str);
    int now=root;
    for(int i=0;i<len;i++)
    {
        if(ch[now][idx(str[i])]==-1)
            ch[now][idx(str[i])]=newnode();
        now=ch[now][idx(str[i])];
    }
    end[now]++;
}

void ac_build()
{
    queue<int> q;
    fail[root]=root;
    for(int i=0;i<4;i++)
    {
        int& temp=ch[root][i];
        if(temp==-1)
        {
            ch[root][i]=root;
        }
        else
        {
            fail[ch[root][i]]=root;
            q.push(ch[root][i]);
        }
    }
    while(!q.empty())
    {
        int now=q.front(); q.pop();
        end[now]+=end[fail[now]];
        for(int i=0;i<4;i++)
        {
            if(ch[now][i]==-1)
            {
                ch[now][i]=ch[fail[now]][i];
            }
            else
            {
                fail[ch[now][i]]=ch[fail[now]][i];
                q.push(ch[now][i]);
            }
        }
    }
}

int n,m;

struct MARTRIX
{
    int _x,_y;
    long long int martrix[200][200];

    MARTRIX () {}
    MARTRIX (int n)
    {
        _x=_y=n;
        memset(martrix,0,sizeof(martrix));
    }

    void getONE(int n)
    {
        for(int i=0;i<n;i++)
        {
            martrix[i][i]=1;
        }
    }

    MARTRIX operator * (const MARTRIX& b) const
    {
        int n=b._x;
        MARTRIX ret(n);
        for(int i=0;i<n;i++)
        {
            for(int j=0;j<n;j++)
            {
                int temp=0;
                for(int k=0;k<n;k++)
                {
                    temp=(temp+martrix[i][k]*b.martrix[k][j])%MOD;
                }
                ret.martrix[i][j]=temp%MOD;
            }
        }
        return ret;
    }
};

MARTRIX QuickPOW(MARTRIX M,int n)
{
    MARTRIX ans;
    ans.getONE(M._x);
    while(n)
    {
        if(n&1)
        {
            ans=ans*M;
        }
        M=M*M;
        n>>=1;
    }
    return ans;
}

int main()
{
    while(scanf("%d%d",&m,&n)!=EOF)
    {
        ac_init();
        for(int i=0;i<m;i++)
        {
            scanf("%s",str);
            ac_insert(str);
        }
        ac_build();

        MARTRIX mat(sz);
        for(int i=0;i<sz;i++)
        {
            if(end[i]) continue;
            for(int j=0;j<4;j++)
            {
                int p=ch[i][j];
                if(end[p]||end[fail[p]]) continue;
                mat.martrix[i][p]++;
            }
        }

        MARTRIX ret=QuickPOW(mat,n);

        long long int ans=0;

        for(int i=0;i<sz;i++)
        {
            ans=(ans+ret.martrix[0][i])%MOD;
        }

        printf("%I64d\n",ans);
    }
    return 0;
}





你可能感兴趣的:(POJ 2778 DNA Sequence)