线性规划与网络流24题之最小路径覆盖问题

http://acm.nefu.edu.cn/JudgeOnline/problemshow.php?problem_id=481

description

    给定有向图G=(V,E)。设P 是G 的一个简单路(顶点不相交)的集合。如果V 中每个顶点恰好在P 的一条路上,则称P是G 的一个路径覆盖。P 中路径可以从V 的任何一个顶点开始,长度也是任意的,特别地,可以为0。G 的最小路径覆盖是G 的所含路径条数最少
的路径覆盖。
设计一个有效算法求一个有向无环图G 的最小路径覆盖。
提示:设V={1,2,...; ,n},构造网络G1=(V1,E1)如下:

      
       
      
每条边的容量均为1。求网络G1的(x0 , y0 )最大流。
对于给定的给定有向无环图G,编程找出G的一个最小路径覆盖。
							

input

多组数据输入.
每组输入第1 行有2个正整数n<=200和m。n是给定有向无环图G 的顶点数,m是G 的边数。接下来的m行,每行有2 个正整数i和j,表示一条有向边(i,j)。

output

每组输出最少路径数。

sample_input

11 12
1 2
1 3
1 4
2 5
3 6
4 7
5 8
6 9
7 10
8 11
9 11
10 11

sample_output

3
选自线性规划和网络流24题。

 分析(引用BYvoid大牛的分析)

有向无环图最小路径覆盖,可以转化成二分图的最大匹配问题,从而用最大流解决。

建模方法:

构造二分图,把原图每个顶点i拆分成二分图x和y集合中的两个顶点,xi和yi,对于原图中存在的每条边(i,j),在二分图
中连接边(Xi,Yj)。然后把二分图最大匹配模型转化为网络流模型,求网络最大流。
最小路径覆盖的条数,就是原图顶点数,减去二分图最大匹配数。沿着匹配边查找,就是一个路径上的点,输出所有路径即可。
建模分析:
对于一个路径覆盖,有如下性质:
1、每个顶点属于且只属于一个路径。
2、路径上除终点外,从每个顶点出发只有一条边指向路径上的另一顶点。
所以我们可以把每个顶点理解成两个顶点,一个是出发,一个是目标,建立二分图模型。该二分图的任何一个匹配方案,都
对应了一个路径覆盖方案。如果匹配数为0,那么显然路径数=顶点数。每增加一条匹配边,那么路径覆盖数就减少一个,所以路
径数=顶点数- 匹配数。要想使路径数最少,则应最大化匹配数,所以要求二分图的最大匹配。
注意,此建模方法求最小路径覆盖仅适用于有向无环图,如果有环或是无向图,那么有可能求出的一些环覆盖,而不是路径覆盖

代码:最大流模板来自黄大神

#include <stdio.h>
#include <iostream>
#include <string.h>
using namespace std;
//--------------------------------------------------------
//--------------------------------------------------------
//最大流模板
const int oo=1e9;
const int mm=161111;
const int mn=999;
int node ,scr,dest,edge;
int ver[mm],flow[mm],next[mm];
int head[mm],work[mm],dis[mm],q[mm];
void prepare(int _node,int _scr,int _dest)
{
    node=_node,scr=_scr,dest=_dest;
    for(int i=0; i<node; ++i)
        head[i]=-1;
    edge=0;
}
void addedge(int u,int v,int c)
{
    ver[edge]=v,flow[edge]=c,next[edge]=head[u],head[u]=edge++;
    ver[edge]=u,flow[edge]=0,next[edge]=head[v],head[v]=edge++;
}
bool Dinic_bfs()
{
    int i,u,v,l,r=0;
    for(i=0; i<node; i++)
        dis[i]=-1;
    dis[q[r++]=scr]=0;
    for(l=0; l<r; ++l)
    {
        for(i=head[u=q[l]]; i>=0; i=next[i])
        {
            if(flow[i]&&dis[v=ver[i]]<0)
            {
                dis[q[r++]=v]=dis[u]+1;
                if(v==dest)
                    return 1;
            }
        }
    }
    return 0;
}
int Dinic_dfs(int u,int exp)
{
    if(u==dest)
        return exp;
    for(int &i=work[u],v,tmp; i>=0; i=next[i])
        if(flow[i]&&dis[v=ver[i]]==dis[u]+1&&(tmp=Dinic_dfs(v,min(exp,flow[i])))>0)
        {
            flow[i]-=tmp;
            flow[i^1]=tmp;
            return tmp;
        }
    return 0;
}
int Dinic_flow()
{
    int i,ret=0,delta;
    while(Dinic_bfs())
    {
        for(i=0; i<node; i++)
            work[i]=head[i];
        while(delta=Dinic_dfs(scr,oo))
            ret+=delta;
    }
    return ret;
}
//----------------------------------------------------------
//----------------------------------------------------------
int main()
{
    int n,m,u,v,c;
    int flag[mm];
    while(~scanf("%d%d",&n,&m))
    {
        memset(flag,0,sizeof(flag));
        prepare(n+m+2,0,n+m+1);
        for(int i=0;i<m;i++)
        {
            scanf("%d%d",&u,&v);
            if(flag[u]==0)//每个点只能和源点建一次边,汇点也如此
            {
               addedge(scr,u,1);
               flag[u]=1;
            }
            addedge(u,v+n,1);
            if(flag[v+n]==0)
            {
                flag[v+n]=1;
                addedge(v+n,dest,1);
            }
        }
        printf("%d\n",n-Dinic_flow());
    }
    return 0;
}


你可能感兴趣的:(线性规划与网络流24题之最小路径覆盖问题)