Crawling in process... Crawling failed Time Limit:4000MS Memory Limit:32768KB 64bit IO Format:%lld & %llu
Description
The Vampires and Lykans are fighting each other to death. The war has become so fierce that, none knows who will win. The humans want to know who will survive finally. But humans are afraid of going to the battlefield.
So, they made a plan. They collected the information from the newspapers of Vampires and Lykans. They found the information about all the dual fights. Dual fight means a fight between a Lykan and a Vampire. They know the name of the dual fighters, but don't know which one of them is a Vampire or a Lykan.
So, the humans listed all the rivals. They want to find the maximum possible number of Vampires or Lykans.
Input
Input starts with an integer T (≤ 10), denoting the number of test cases.
Each case contains an integer n (1 ≤ n ≤ 105), denoting the number of dual fights. Each of the next n lines will contain two different integers u v (1 ≤ u, v ≤ 20000) denoting there was a fight between u and v. No rival will be reported more than once.
Output
For each case, print the case number and the maximum possible members of any race.
Sample Input
2
2
1 2
2 3
3
1 2
2 3
4 2
Sample Output
Case 1: 2
Case 2: 3
#include <cstdio> #include <cstring> #include <algorithm> #include <vector> /* 这道题目只要记住他的意思是说,数字的编号是唯一的 1 2 2 3 这里的二必定是一个队的,不是两个队的,没有理解题目的读者请仔细品味题目意思 其他的就简单了,运用一点二分图的知识就可以解决问题了, */ using namespace std; const int maxn=20000+5; vector<int >G[maxn]; bool vis[maxn]; bool exist[maxn]; int par[maxn]; int xse[maxn],sum1,sum2,ans; int T,u,v,_max,n; void init() { memset(vis,false,sizeof(vis)); memset(xse,0,sizeof(xse)); memset(exist,false,sizeof(exist)); ans=_max=0; for(int i=0; i<maxn; i++) { par[i]=i; G[i].clear(); } } int find(int x) { return par[x]==x?x:par[x]=find(par[x]); } void unite(int x,int y) { x=find(x); y=find(y); par[x]=y; } void DFS(int u) { for(int i=0; i<G[u].size(); i++) { if(vis[G[u][i]])continue; vis[G[u][i]]=true; xse[G[u][i]]=!xse[u]; DFS(G[u][i]); } } void DFS_TWO(int u) { if(xse[u]) { sum1++; } else { sum2++; } for(int i=0; i<G[u].size(); i++) { if(vis[G[u][i]]) { vis[G[u][i]]=false; DFS_TWO(G[u][i]); } } } int main() { scanf("%d",&T); for(int cases=1; cases<=T; cases++) { scanf("%d",&n); init(); for(int i=0; i<n; i++) { scanf("%d%d",&u,&v); G[u].push_back(v); G[v].push_back(u); exist[u]=exist[v]=true; _max=max(_max,u); _max=max(_max,v); unite(u,v); // printf("<%d,%d>\n",u,v); } for(int u=1;u<=_max;u++){ //printf("[%d,%d,%d]\n",exist[u],par[u],u); if(exist[u]&&par[u]==u){ sum1=sum2=0; vis[u]=true;DFS(u);//将在一条连通图上的点进行标记 vis[u]=false;DFS_TWO(u);//将这些点进行分类,分为A,B两组 // printf("[%d,%d]\n",sum1,sum2); ans+=max(sum1,sum2);//选择其中最大的 } } printf("Case %d: %d\n",cases,ans); } return 0; }