POJ2411——Mondriaan's Dream

Mondriaan's Dream
Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 12042   Accepted: 7011

Description

Squares and rectangles fascinated the famous Dutch painter Piet Mondriaan. One night, after producing the drawings in his 'toilet series' (where he had to use his toilet paper to draw on, for all of his paper was filled with squares and rectangles), he dreamt of filling a large rectangle with small rectangles of width 2 and height 1 in varying ways.

Expert as he was in this material, he saw at a glance that he'll need a computer to calculate the number of ways to fill the large rectangle whose dimensions were integer values, as well. Help him, so that his dream won't turn into a nightmare!

Input

The input contains several test cases. Each test case is made up of two integer numbers: the height h and the width w of the large rectangle. Input is terminated by h=w=0. Otherwise, 1<=h,w<=11.

Output

POJ2411——Mondriaan's Dream_第1张图片For each test case, output the number of different ways the given rectangle can be filled with small rectangles of size 2 times 1. Assume the given large rectangle is oriented, i.e. count symmetrical tilings multiple times.

Sample Input

1 2
1 3
1 4
2 2
2 3
2 4
2 11
4 11
0 0

Sample Output

1
0
1
2
3
5
144
51205

Source


覆盖模型,用状压dp解决

设棋盘为n, m为了高效起见,如果n > m,就交换,如果n, m都是奇数,答案一定是0(无论放多少牌,牌所占的空间是偶数的,所以最后的空间一定是偶数才能放满

dp[0][(1<<m)-1]  = 1;

dp[i][j] += dp[i - 1][k];

其中的j和k是符合条件的状态,我们通过dfs预处理出来(把上一行和这一行的状态和在一起看做一个状态)


放置方案有3种,竖放,横放,不放(0)   如果当前行当前列为0(二进制表示状态),那么当前列上一行一定是1(否则就空出2个位置来了);如果当前行当前列为1, 那么可能是竖放,则上一行当前列是0;可能是横放,则当前行下一列是1,上一行当前列是1,上一行下一列是1

为什么竖直放置要看做01呢,这样可以保证最后一行一定全部是1

                       
                                                                                                                                                               

#include <map>  
#include <set>  
#include <list>  
#include <stack>  
#include <vector>  
#include <queue>  
#include <cmath>  
#include <cstdio>  
#include <cstring>  
#include <iostream>  
#include <algorithm>  

using namespace std;

__int64 dp[12][2100];

struct node
{
    int cur, last;
}s[14000];

int n, m, res;

void dfs(int l, int cur, int last)
{
    if (l > m)
    {
        return ;
    }
    if (l == m)
    {
        s[res].cur = cur;
        s[res++].last = last;
        return;
    }
    dfs(l + 2, (cur << 2) | 3, (last << 2) | 3);
    dfs(l + 1, (cur << 1) | 1, last << 1);
    dfs(l + 1, (cur << 1), (last << 1) | 1);
}

int main()
{
    while (~scanf("%d%d", &n, &m))
    {
        if (!m && !n)
        {
            break;
        }
        if( (m & 1) && ( n & 1) )
        {
            printf("0\n");
            continue;
        }
        if (n < m)
        {
            m ^= n;
            n ^= m;
            m ^= n;
        }
        res = 0;
        dfs(0, 0, 0);
        memset (dp, 0, sizeof(dp) );
        dp[0][(1 << m) - 1] = 1;//作为初始化,第0行只能横放,因为不能影响下面;
        for (int i = 1; i <= n; ++i)
        {
            for (int j = 0; j < res; ++j)
            {
                dp[i][s[j].cur] += dp[i - 1][s[j].last];
            }
        }
        printf("%I64d\n", dp[n][(1 << m) - 1]);
    }
}


你可能感兴趣的:(dp)