作者:刘洪涛,华清远见嵌进式学院金牌讲师。
面对不断升级的linux内核、GNU开发工具、linux环境下的各种图形库,很多linux应用程序开发职员和linux设备驱动开发职员即兴奋,又烦躁。兴奋的是新的软件软件、工具给我提供了更强大的功能,烦躁的是适应新软件的特性、搭建新环境是一项非常繁琐的事情。本文想从以下3个方面探讨一下“面对不断升级的内核,如何学习linux设备驱动”。
内核发展的现状及其对技术职员的影响
Linux目前主要维护2.4和2.6两个内核版本。在http://www.kernel.org/ 网站上已经可 以下载到最新的2.6内核linux-2.6.31,及最新的2.4内核linux-2.4.37。稳定版本号基本上是1~3月更新一次,如:2.6.22至2.6.23。升级版本号每1~2周更新一次,如:2.6.23.1至2.6.23.2。
由于高版本内核并不完全兼容低版本内核,所以内核升级对从事linux开发的技术职员造成了一定的影响,特别对于linux进门职员。
内核的升级对应从事linux应用程序开发的职员来说影响较小,由于系统调用基本保持兼容。而影响比较大的是驱动开发职员。每次内核的更新都可以导致很多内核函数使用上的变化。其中有内核本身提供的函数,也有硬件平台代码提供的函数,后者变化的更加频繁。这一点让初学内核驱动的人很迷茫,由于当他们按照手里的经典著作,如:Alessandro的《linux设备驱动程序》,编写驱动时,发现并不能够成功的在你的linux平台上编译通过、或不能正常执行。你的朋友会告诉你,你用的内核和书里的不一致。那该怎么办呢?
我想从两个方面往解释这个题目,一方面是如何写好linux设备驱动,另一方面是如何应对不断升级的内核。
1、如何写好Linux设备驱动
Linux设备驱动是linux内核的一部分,是用来封装硬件细节,为上层提供标准接口的一种方法。为了能够编写出质量比较高的驱动,要求工程师必须具备以下几个方面的知识:
1.1 熟悉处理器的性能
如:处理器的体系结构、汇编语言、工作模式、异常处理等此项对于初学者来说,重要程度:***。也就是说还不熟悉驱动编写方法的情况下,可
以先不把重心放在这一项上,由于可能由于它的枯燥、抽象而影响到你对设备驱动的爱好。
随着你不断的熟悉驱动的编写,你会很自然的意识到此项的重要性。
12 把握驱动目标的硬件工作原理及通讯协议
如:串口控制器、显卡控制器、硬件编解码、存储卡控制器、I2C通讯、SPI通讯、USB通讯、SDIO通讯、I2S通讯、PCI通讯等
此项的重要程度应该不用多说了,编写设备驱动的条件就是知道设备的操纵方法。但不是说要把所有设备的操纵方法都熟悉了以后才可以驱动,你只需要了解你要驱动的硬件就可以了。所有这一项对于初学者来说重要程度都是:*****。
1.3 把握硬件的控制方法
如:中断、轮询、DMA 通常一个硬件控制器会有多种控制方法,你需要根据系统性能的需要公道的选择操纵方法。
此项对于初学者来说:重要程度:****。初学阶段以实现功能为目的。把握的顺序应该是,轮询->中断->DMA。随着学习的深进,需要综合考虑系统的性能需求,采取合适的方法。
1.4 良好的GNU C语言编程基础
如:C语言的指针、结构体、内存操纵、链表、队列、栈、C和汇编混合编程等。
这些编程语法是编写设备驱动的基础。
此项无论对于初学者还是熟手重要程度:*****。
1.5 良好的linux操纵系统概念
如:多进程、多线程、进程调度、进程抢占、进程上下文、虚拟内存、原子操纵、阻塞、睡眠、同步等概念及它们之间的关系。
这些概念及方法在设备驱动的使用是linux设备驱动区别单片机编程的最大特点。只有理解了它们才会编写出高质量的驱动。
此项对于初学者来说:重要程度:***。开始可以以实现功能为目的,逐步完善自己的驱动。
1.6 把握linux内核中设备驱动的编写接口
如:字符设备的cdev、块设备的gendisk、网络设备的net_device,以及基于这些基本接口的frAMEbuffer设备的fb_info、mtd设备的mtd_info、tty设备的tty_driver、usb设备的usb_driver、mmc设备的mmc_hoST等
Linux内核为设备驱动编写者留下了标准的接口。驱动编写者无需精通内核的各个部分,只需要明确内核留给我们的接口,并实现此接口就可以了。内核流出的接口采用的是面向对象的思路,即把目标设备看成一个对象,通常利用一个结构体来描述这个对象。驱动工程师的任务就是实现这个对象。这个结构体中会包含设备的属性(用变量表示)和操纵方法(用函数指针表示)。如:字符设备的cdev
struct cdev {
struct kobject kobj;
struct module *owner;
cONst struct file_operations *ops; //操纵方法结合,其它项都是属性
struct list_head list;
dev_t dev;
unsigned int count;
};
此项对于初学者来说:重要程度:****。开始阶段可以以模仿为主,即套用一些固定的模板。
2. 如何应对不断升级的内核
内核升级对驱动的影响主要体现在,(1)驱动接口定义的变化(2)内核的一些功能函数的名称、参数、头文件、宏定义的变化(3)平台代码关于硬件操纵方面封装的一些函数的变化(4)设备模型的影响。下面探讨一下,如何应对这几个方面的题目:
2.1 驱动接口定义的变化
如:2.4内核中字符设备驱动的注册接口是
int register_chrdev(unsigned int major, const char * name, struct file_operations *fops)
而2.6内核中已经不建议使用这种方法了,改为:
int cdev_add(struct cdev *p, dev_t dev, unsigned count)
又如:2.6.27内核中网卡接口的net_device结构成员和低版本的net_device结构成员也发生了一些变化。
这种接口定义及注册方法带来的变化,发生的并不频繁。解决方案是:参考内核中的代码。这种接口定义及注册方法在内核中非常轻易找到,如:字符设备驱动的注册方法及接口定义可以参照内核driver/char/目录下的很多实例。
2.2 内核的一些功能函数的名称、参数、头文件、宏定义的变化
如:中断注册函数的格式及参数在2.4内核、2.6内核低版本和高版本之间都存在差别
在2.6.8中,中断注册函数的定义为:
int request_IRq(unsigned int irq, irqreturn_t (*handler)(int, void *, struct pt_regs *),unsigned long irq_flags, const char * devname, void *dev_id)
irq_flags的取值主要为下面的某一种或组合:
SA_INTERRUPT、SA_SAMPLE_RANDOM、SA_SHIRQ
在2.6.26中,中断注册函数的定义为:
int request_irq(unsigned int irq, irq_handler_t handler,unsigned long irqflags, const char *devname, void *dev_id)
typedef irqreturn_t (*irq_handler_t)(int, void *);
irq_flags的取值主要为下面的某一种或组合:(功能和2.6.8的对应)
IRQF_DISABLED、IRQF_SAMPLE_RANDOM、IRQF_SHARED
当出现这些题目时,编译过程中,编译器会给我们比较明确的错误提示,根据这些提示你可以判定出是否是缺少头题目、是否是函数参数定义有误等。解决题目的最好办法还是到你的目标内核中找信息。此时找题目的方法可以借助于搜索,如:你可以在新的内核中搜索request_irq,看新内核中的驱动是如何使用它的。这种方法非常有效。
2.3 平台代码关于硬件操纵方面封装的一些函数的变化
内核中,硬件平台相关的代码在内核更新过程中变化比较频繁。和我们的设备驱动也是息息相关。所以在针对一个新内核编写设备驱动前,一定要熟悉你的平台代码的结构。有时平台固然提供了内核要求的接口函数,但使用起来功能却并不完善。下面还是先举个例子说明平台代码更新对设备驱动的影响。
如:在linux-2.6.8内核中,调用set_irq_type(IRQ_EINT0, IRQT_FALLING);往设置S3C2410的IRQ_EINT0的中断触发信号类型,你会发现不会有什么效果。跟踪代码发现内核的set_irq_type函数需要平台提供一个针对硬件平台的实现函数
static struct irqchip s3c_irqext_chip = {
.mask = s3c_irqext_mask,
.unmask = s3c_irqext_unmask,
.ack = s3c_irqext_ack,
.type = s3c_irqext_type
};
s3c_irqext_type就是linux内核需要的实现函数,而s3c_irqext_type在2.6.8中的实现为:
static int s3c_irqext_type(unsigned int irq, unsigned int type)
{
irqdbf("s3c_irqext_type: called for irq %d, type %d/n", irq, type);
return 0;
}
原来并没有实现。而在较高版本的内核,如2.6.26内核中,这个函数是实现了的。所以你一定要小心。当平台函数不好用时,一定要查查原因,或者直接操纵硬件寄存器来达到目的。
2.4 2.6内核设备模型对驱动的影响
在2.6内核中写设备驱动和在2.4内核中有着很大的不同,就是在设备驱动中融进了比设备驱动本身结构还复杂,难以理解的设备模型。初学驱动时你可以不理会设备模型,但你会发现内核里的驱动代码基本上都是融进了设备模型的了。所以很多时候你不得不面对现实,还是要弄懂它,并且它有的注册方法也会随着内核的升级而发生变化。解决此类题目的最好方法还是参考目标内核驱动代码。
3. 总结:
开始学习设备驱动时,选择一个当前比较流行的内核版本和硬件平台。不着急追赶最新潮流。这样你可以找到的网络资源会比较多,不至于有孤军奋战的感觉。我想这个过程应该不低于1年。当过了这个过程后,尝试将你编写过的驱动移植到各个目标平台上。上面的一些建议、和应对方法是本人的一些经验总结,仅供参考。
“本文由华清远见http://www.embedu.org/index.htm提供”