hdu 3948 The Number of Palindromes

后缀数组,求不同回文子串的数量

#include <STDIO.H>
#include <STRING.H>

// hdu 3948 
const int MAXN = 200010;
int wa[MAXN], wb[MAXN], ws[MAXN], wv[MAXN]; 
int rank[MAXN], height[MAXN], r[MAXN], sa[MAXN];
inline int min(const int a, const int b){return a<b?a:b;}
inline void swap(int &x, int &y) {int a = x; x = y; y = a;}
bool cmp(int *r, int a, int b, int l)
{
	return (r[a] == r[b] && r[a+l] == r[b+l]);
}
// r: 待排序的字符串,长度为n,最大值小于m 
// ws:基数排序
// sa:存放排序结果 
void da(int *r, int *sa, int n, int m)
{
	//用倍增算法求后缀数组
	int i, j, p, *x = wa, *y = wb, *t;
	// 使用基数排序对长度为1的字符串进行排序
	for (i = 0; i< m; ++i) ws[i] = 0;	// 初始化ws
	for (i = 0; i< n; i++) ws[x[i]=r[i]]++;  
	for (i = 1; i< m; i++) ws[i]+=ws[i-1];
	for (i = n-1; i>= 0; --i) sa[--ws[x[i]]] = i; 
	
	// 进行若干次基数排序,基数排序要分两次,第一次是对第二关键字排序
	// 第二次是对第一关键字排序。对第二关键字排序的结果可以利用上一次求得的sa直接算出
	for (j=1, p=1; p< n; j*=2, m=p)
	{
		for (p=0, i=n-j; i< n; ++i) y[p++] = i;
		//变量j是当前字符串的长度,数组y保存的是对第二关键字排序的结果
		for (i=0; i< n; ++i) if (sa[i] >= j) y[p++] = sa[i] - j; 
		for (i=0; i< n; ++i) wv[i] = x[y[i]];
		for (i=0; i< m; ++i) ws[i] = 0;
		for (i=0; i< n; ++i) ws[wv[i]]++;
		for (i=1; i< m; ++i) ws[i]+= ws[i-1];
		for (i=n-1; i>=0; --i) sa[--ws[wv[i]]] = y[i];
		// 计算rank 值
		for (t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1; i< n; ++i)
			x[sa[i]] = cmp(y, sa[i-1], sa[i], j)?p-1:p++;
	}
}
/*
	height:定义height[i]=suffix(sa[i-1])和suffix(sa[i])的最长公共前缀,
	也就是排名相邻的两个后缀的最长公共前缀
*/
void calHeight(int *r, int *sa, int n)
{
	int i, j, k = 0;
	for (i = 1; i<= n; ++i) rank[sa[i]] = i;
	for (i = 0; i< n; height[rank[i++]] = k)
		for (k?k--:0, j = sa[rank[i]-1]; r[i+k] == r[j+k]; k++);
}
char str[MAXN];
// 将字符串翻转后用一个特殊字符间隔连接到原字符串后
int mGet() // r = str + '*' + reverse(str)
{
	int l;
	for (l = 0; str[l]; l++)
		r[l] = str[l];
	r[l] = '#';
	for (int i = l-1; i >= 0; i--)
		r[++l] = str[i];
	r[++l] = 0;
	return l;
}
int LOG[MAXN];
int st[MAXN][20];
/*
	st[i][j]表示height[j]到height[j+2^i-1]的最小值
	初始化st[i][0]=height[i],st[i][j]=min(st[i][j-1],st[i+(1<<j-1)][j-1])
*/
void initRMQ(const int &n)
{
	//初始化RMQ
	int i, j, k, limit ;
	for (i=0; i< n; ++i) st[i][0] = height[i];
	k = LOG[n];
	for (j = 1; j<= k; ++j)
	{
		limit = n - (1<<(j-1));
		for (i = 0; i<= limit; ++i)
			st[i][j] = min(st[i][j-1], st[i+(1<<(j-1))][j-1]);
	}
}

int query(int x, int y)
{
	if (x > y) swap(x, y);
	++x;
	int k= LOG[y-x+1];
	return min(st[x][k], st[y-(1<<k)+1][k]);
}

int solve(int n)
{
	int ans = 0, st1 = 0, st2 = 0;
	int j;
	rank[n] = 0;
	for (int i = 2; i<= n; ++i)
	{
		st1 = min(st1, height[i]);
		j = query(i, rank[n-sa[i]-1]);
		if (j > st1)
			ans += j-st1, st1 = j;
		st2 = min(st2, height[i]);
		j = query(i, rank[n-sa[i]]);
		if ( j > st2)
			ans += j-st2, st2 = j;
	}
	return ans;
}
int main()   
{
#ifndef ONLINE_JUDGE
    freopen("in.txt", "r", stdin);
#endif
	int t, cs = 0;
	int i;
	// LOG[i] == log2 i ;
	for (i = 1, LOG[0] = -1; i< MAXN; ++i)	LOG[i] = LOG[i>>1] + 1;
	scanf("%d", &t);
	while (t--)
	{
		scanf("%s", str);
		int n = mGet();
		da(r, sa, n+1, 128);
		calHeight(r, sa, n);
		initRMQ(n+1);
		printf("Case #%d: %d\n", ++cs, solve(n));
	}
	return 0;
}


你可能感兴趣的:(hdu 3948 The Number of Palindromes)