这题也是高斯消元的模板题,要枚举自由变元求得最优解。也可以直接暴力枚举,不过有技巧的是,只需要第一行枚举下,每行得到使得该行以上可以的状态,然后继续往下枚举。
我是感觉直接高斯消元还简单明了点~
// 高斯消元解异或方程组 poj 1753 #include <cstdio> #include <cstring> #include <algorithm> using namespace std; int a[22][22], x[22], var, equ, n, pos[22]; char s[22][22]; int dir[4][2] = {{1,0},{-1,0},{0,1},{0,-1}}; void init(int q) { memset(a, 0, sizeof(a)); equ = var = n*n; for(int i = 0;i < n; i++) { for(int j = 0;j < n; j++) { int st = i*n+j; if(s[i][j] == 'w') a[st][var] = q; else a[st][var] = !q; a[st][st] = 1; for(int k = 0;k < 4; k++) { int xx = i+dir[k][0]; int yy = j+dir[k][1]; if(xx < 0 || xx >= n || yy < 0 || yy >= n) continue; int to = xx*n+yy; a[st][to] = 1; } } } } int min_sum; void dfs(int row, int col) { if(col == -1 && row == -1) { int sum = 0; for(int i = 0;i < var; i++) sum += x[i]; min_sum = min(min_sum, sum); return ; } if(pos[row] == col) { x[col] = a[row][var]; for(int i = var-1;i > col; i--) x[col] ^= x[i]&a[row][i]; dfs(row-1, col-1); } else { x[col] = 1; dfs(row, col-1); x[col] = 0; dfs(row, col-1); } } int gauss() { int row = 0, col = 0; for( ; row < equ && col < var; row++, col++) { int maxr = row; for(int i = row+1;i < equ; i++) if(a[i][col]) maxr = i; if(a[maxr][col] == 0) { row--; continue; } if(row != maxr) { for(int i = col;i < var+1; i++) swap(a[maxr][i], a[row][i]); } for(int i = row+1;i < equ; i++) { if(a[i][col]==0) continue; for(int j = col;j < var+1; j++) a[i][j] ^= a[row][j]; } } // 无解 for(int i = row;i < equ; i++) if(a[i][var]) return -1; if(row < var) { // 多解情况,求最小解 min_sum = 1<<30; for(int i = 0;i < row; i++) { for(int j = 0;j < var; j++) if(a[i][j]) { pos[i] = j; break; } } dfs(row-1, var-1); return min_sum; } // 唯一解 int ans = 0; for(int i = var-1;i >= 0; i--) { x[i] = a[i][var]; for(int j = i+1;j < var; j++) x[i] ^= x[j]&a[i][j]; ans += x[i]; } return ans; } int main() { n = 4; for(int i = 0;i < n; i++) scanf("%s", s[i]); init(0); int ans1 = gauss(); init(1); int ans2 = gauss(); if(ans1 == -1 && ans2 == -1) puts("Impossible"); else if(ans1 == -1) printf("%d\n", ans2); else if(ans2 == -1) printf("%d\n", ans1); else printf("%d\n", min(ans1, ans2)); }